购物车中还没有商品,赶紧选购吧!
群与图,设计与动力学 (英文版)Groups and Graphs, Desig R. A. Bailey, Peter J. Cameron,Yaokun Wu 主编 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:群与图,设计与动力学 (英文版)Groups and Graphs, Designs and Dynamics
ISBN:9787040650952
出版社:高等教育出版社
出版年月
作者:R. A. Bailey, Peter J. Cameron,Yaokun Wu 主编
定价:169.00
页码:452
装帧:平装
版次:1
字数:520 千字
开本
套装书:否

本系列共包含四门短期课程,内容涵盖群表示、图谱、统计最优性和符号动力学,并着重阐释了这些领域在线性代数中的共同根源。它引领学生从线性代数的基础知识逐步深入到高层次的应用领域: 有限群的表示理论,延伸至概率模型与调和分析; 基于量子概率技术的增长图的特征值分析; 从图的拉普拉斯特征值角度探讨设计的统计最优性; 符号动力学,涉及矩阵稳定性与 K 理论的应用。 本书为研究人员和刚入门的博士生提供了宝贵资源,包含丰富的习题、注释和参考文献。

前辅文
1 Topics in representation theory of finite groups T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli
  1.1 Introduction
  1.2 Representation theory and harmonic analysis on finite groups
   1.2.1 Representations
   1.2.2 Finite Gelfand pairs
   1.2.3 Spherical functions
   1.2.4 Harmonic analysis of finite Gelfand pairs
  1.3 Laplace operators and spectra of random walks on finite graphs
   1.3.1 Finite graphs and their spectra
   1.3.2 Strongly regular graphs
  1.4 Association schemes
  1.5 Applications of Gelfand pairs to probability
   1.5.1 Markov chains
   1.5.2 The Ehrenfest diffusion model
  1.6 Induced representations and Mackey theory
   1.6.1 Induced representations
   1.6.2 Mackey theory
   1.6.3 The little group method of Mackey and Wigner
   1.6.4 Hecke algebras
   1.6.5 Multiplicity-free triples and their spherical functions
  1.7 Representation theory of GL(2;Fq)
   1.7.1 Finite fields and their characters
   1.7.2 Representation theory of the affine group Aff(Fq)
   1.7.3 The general linear group GL(2,Fq)
   1.7.4 Representations of GL(2,Fq)
  References
2 Quantum probability approach to spectral analysis of growing graphs N. Obata
  2.1 Introduction
  2.2 Basic concepts of quantum probability
   2.2.1 Algebraic probability spaces
   2.2.2 Spectral distributions
   2.2.3 Convergence of random variables
   2.2.4 Classical probability vs quantum probability
   2.2.5 Notes
  2.3 Quantum decomposition
   2.3.1 Jacobi coefficients and interacting Fock spaces
   2.3.2 Orthogonal polynomials
   2.3.3 Quantum decomposition
   2.3.4 How to explicitly compute μ from ({ωn},{αn})
   2.3.5 Boson, fermion and free Fock spaces
   2.3.6 Notes
  2.4 Spectral distributions of graphs
   2.4.1 Adjacency matrix as a real random variable
   2.4.2 IFS structure associated to graphs
   2.4.3 Homogeneous trees and Kesten distributions
  2.5 Growing graphs
   2.5.1 Formulation of question in general
   2.5.2 Growing distance-regular graphs
   2.5.3 Growing regular graphs
   2.5.4 Notes
  2.6 Concepts of independence and graph products
   2.6.1 From classical to commutative independence
   2.6.2 Graph products
   2.6.3 Central Limit Theorem for Cartesian powers
   2.6.4 Monotone independence and comb product
   2.6.5 Boolean independence and star product
   2.6.6 Convolutions of spectral distributions
   2.6.7 Notes
  References
3 Laplacian eigenvalues and optimality R. A. Bailey and P. J. Cameron
  3.1 Block designs in experiments
   3.1.1 Experiments in blocks
   3.1.2 Complete-block designs
   3.1.3 Incomplete-block designs
   3.1.4 Matrix formulae
   3.1.5 Eigenspaces of real symmetric matrices
   3.1.6 Fisher’s Inequality
   3.1.7 Constructions
   3.1.8 Partially balanced designs
   3.1.9 Laplacian matrix and information matrix
   3.1.10 Estimation and variance
   3.1.11 Reparametrization
   3.1.12 Exercises
  3.2 Laplacian matrices and their eigenvalues
   3.2.1 Which graph is best?
   3.2.2 Graph terminology
   3.2.3 The Laplacian of a graph
   3.2.4 Isoperimetric number
   3.2.5 Signed incidence matrix
   3.2.6 Generalized inverse; Moore–Penrose inverse
   3.2.7 Electrical networks
   3.2.8 The Matrix-Tree Theorem
   3.2.9 Markov chains
   3.2.10 Exercises
  3.3 Designs, graphs and optimality
   3.3.1 Two graphs associated with a block design
   3.3.2 Laplacian matrices
   3.3.3 Estimation and variance
   3.3.4 Resistance distance
   3.3.5 Spanning trees
   3.3.6 Measures of optimality
   3.3.7 Some optimal designs
   3.3.8 Designs with very low replication
   3.3.9 Exercises
  3.4 Further topics
   3.4.1 Sylvester designs
   3.4.2 Sparse versus dense
   3.4.3 Variance-balanced designs
   3.4.4 Recognising a concurrence graph
   3.4.5 Other graph parameters
   3.4.6 Some open problems
   3.4.7 Exercises
  References
4 Symbolic dynamics and the stable algebra of matrices M. Boyle and S. Schmieding
  4.1 Overview
  4.2 Basics
   4.2.1 Topological dynamics
   4.2.2 Symbolic dynamics
   4.2.3 Edge SFTs
   4.2.4 The continuous shift-commuting maps
   4.2.5 Powers of an edge SFT
   4.2.6 Periodic points and nonzero spectrum
   4.2.7 Classification of SFTs
   4.2.8 Strong shift equivalence of matrices, classification of SFTs
   4.2.9 Shift equivalence
   4.2.10 Williams’ shift equivalence conjecture
   4.2.11 Appendix 2
  4.3 Shift equivalence and strong shift equivalence over a ring
   4.3.1 SE-Z+: dynamical meaning and reduction to SE-Z
   4.3.2 Strong shift equivalence of matrices over a ring
   4.3.3 SE, SSE and det(I?tA)
   4.3.4 Shift equivalence over a ring R
   4.3.5 SIM-Z and SE-Z: some example classes
   4.3.6 SE-Z via direct limits
   4.3.7 SE-Z via polynomials
   4.3.8 Cokernel of (I?tA), a Z[t]-module
   4.3.9 Other rings for other systems
   4.3.10 The module-theoretic formulation of SE over a ring
   4.3.11 Appendix 3
  4.4 Polynomial matrices
   4.4.1 Background
   4.4.2 Presenting SFTs with polynomial matrices
   4.4.3 Algebraic invariants in the polynomial setting
   4.4.4 Polynomial matrices: from elementary equivalence to conjugate SFTs
   4.4.5 Classification of SFTs by positive equivalence in I?NZC
   4.4.6 Functoriality: flow equivalence in the polynomial setting
   4.4.7 Appendix 4
  4.5 Inverse problems for nonnegative matrices
   4.5.1 The NIEP
   4.5.2 Stable variants of the NIEP
   4.5.3 Primitive matrices
   4.5.4 Irreducible matrices
   4.5.5 Nonnegative matrices
   4.5.6 The Spectral Conjecture
   4.5.7 Boyle–Handelman Theorem
   4.5.8 The Kim–Ormes–Roush Theorem
   4.5.9 Status of the Spectral Conjecture
   4.5.10 Laffey’s Theorem
   4.5.11 The Generalized Spectral Conjectures
   4.5.12 Appendix 5
  4.6 A brief introduction to algebraic K-theory
   4.6.1 K1 of a ring R
   4.6.2 NK1(R)
   4.6.3 Nil0(R)
   4.6.4 K2 of a ring R
   4.6.5 Appendix 6
  4.7 The algebraic K-theoretic characterization of the refinement of strong shift equivalence over a ring by shift equivalence
   4.7.1 Comparing shift equivalence and strong shift equivalence over a ring
   4.7.2 The Algebraic Shift Equivalence Problem
   4.7.3 Strong shift equivalence and elementary equivalence
   4.7.4 The refinement of shift equivalence over a ring by strong shift equivalence
   4.7.5 The SE and SSE relations in the context of endomorphisms
   4.7.6 Appendix 7
  4.8 Automorphisms of SFTs
   4.8.1 Simple automorphisms
   4.8.2 The center of Aut(σA)
   4.8.3 Representations of Aut(σA)
   4.8.4 Dimension representation
   4.8.5 Periodic point representation
   4.8.6 Inerts and the sign-gyration compatibility condition
   4.8.7 Actions on finite subsystems
   4.8.8 Notable problems regarding Aut(σA)
   4.8.9 The stabilized automorphism group
   4.8.10 Mapping class groups of subshifts
   4.8.11 Appendix 8
  4.9 Wagoner’s strong shift equivalence complex, and applications
   4.9.1 Wagoner’s SSE complexes
   4.9.2 Homotopy groups for Wagoner’s complexes and Aut(σA)
   4.9.3 Counterexamples to Williams’ conjecture
   4.9.4 Kim–Roush relative sign-gyration method
   4.9.5 Wagoner’s K2-valued obstruction map
   4.9.6 Some remarks and open problems
   4.9.7 Appendix 9
References
Subject Index
Author Index

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加