1 Probability theory:basic notions 
  1.1 Introduction 
  1.2 Probability distributions 
  1.3 Typical values and deviations 
  1.4 Moments and characteristic function 
  1.5 Divergence of moments-asymptotic behaviour 
  1.6 Gaussian distribution 
  1.7 Log-normal distribution 
  1.8 Levy distributions and Paretian tails 
  1.9 Other distributions(*) 
  1.10 Summary 
2 Maximum and addition of random variables 
  2.1 Maximum of random variables 
  2.2 Sums of random variables 
   2.2.1 Convolutions 
   2.2.2 Additivity of cumulants and of tail amplitudes 
   2.2.3 Stable distributions and self-similarity 
  2.3 Central limit theorem 
   2.3.1 Convergence to a Gaussian 
   2.3.2 Convergence to a Levy distribution 
   2.3.3 Large deviations 
   2.3.4 Steepest descent method and Cramer function(*) 
   2.3.5 The CLT at work on simple cases 
   2.3.6 Truncated Levy distributions 
   2.3.7 Conclusion:survival and vanishing of tails 
  2.4 From sum to max:progressive dominance of extremes(*) 
  2.5 Linear correlations and fractional Brownian motion 
  2.6 Summary 
3 Continuous time limit, Ito calculus and path integrals 
  3.1 Divisibility and the continuous time limit 
   3.1.1 Divisibility 
   3.1.2 Infinite divisibility 
   3.1.3 Poisson jump processes 
  3.2 Functions of the Brownian motion and Ito calculus 
   3.2.1 Ito's lemma 
   3.2.2 Novikov's formula 
   3.2.3 Stratonovich's prescription 
  3.3 Other techniques 
   3.3.1 Path integrals 
   3.3.2 Girsanov's formula and the Martin-Siggia-Rose trick(*) 
  3.4 Summary 
4 Analysis of empirical data 
  4.1 Estimating probability distributions 
   4.1.1 Cumulative distribution and densities-rank histogram 
   4.1.2 Kolmogorov-Smirnov test 
   4.1.3 Maximum likelihood 
   4.1.4 Relative likelihood 
   4.1.5 A general caveat 
  4.2 Empirical moments:estimation and error 
   4.2.1 Empirical mean 
   4.2.2 Empirical variance and MAD 
   4.2.3 Empirical kurtosis 
   4.2.4 Error on the volatility 
  4.3 Correlograms and variograms 
   4.3.1 Variogram 
   4.3.2 Correlogram 
   4.3.3 Hurst exponent 
   4.3.4 Correlations across different time zones 
  4.4 Data with heterogeneous volatilities 
  4.5 Summary 
5 Financial products and financial markets 
  5.1 Introduction 
  5.2 Financial products 
   5.2.1 Cash(Interbank market) 
   5.2.2 Stocks 
   5.2.3 Stock indices 
   5.2.4 Bonds 
   5.2.5 Commodities 
   5.2.6 Derivatives 
  5.3 Financial markets 
   5.3.1 Market participants 
   5.3.2 Market mechanisms 
   5.3.3 Discreteness 
   5.3.4 The order book 
   5.3.5 The bid-ask spread 
   5.3.6 Transaction costs 
   5.3.7 Time zones, overnight, seasonalities 
  5.4 Summary 
6 Statistics of real prices:basic results 
  6.1 Aim of the chapter 
  6.2 Second-order statistics 
   6.2.1 Price increments vs. returns 
   6.2.2 Autocorrelation and power spectrum 
  6.3 Distribution of returns over different time scales 
   6.3.1 Presentation of the data 
   6.3.2 The distribution of returns 
   6.3.3 Convolutions 
  6.4 Tails,what tails? 
  6.5 Extreme markets 
  6.6 Discussion 
  6.7 Summary 
7 Non-linear correlations and volatility fluctuations 
  7.1 Non-linear correlations and dependence 
   7.1.1 Non identical variables 
   7.1.2 A stochastic volatility model 
   7.1.3 GARCH(1,1) 
   7.1.4 Anomalous kurtosis 
   7.1.5 The case of infinite kurtosis 
  7.2 Non-linear correlations in financial markets:empirical results 
   7.2.1 Anomalous decay of the cumulants 
   7.2.2 Volatility correlations and variogram 
  7.3 Models and mechanisms 
   7.3.1 Multifractality and multifractal models(*) 
   7.3.2 The microstructure of volatility 
  7.4 Summary 
8 Skewness and price-volatility correlations 
  8.1 Theoretical considerations 
   8.1.1 Anomalous skewness of sums of random variables 
   8.1.2 Absolute vs. relative price changes 
   8.1.3 The additive-multiplicative crossover and the q-transformation 
  8.2 A retarded model 
   8.2.1 Definition and basic properties 
   8.2.2 Skewness in the retarded model 
  8.3 Price-volatility correlations:empirical evidence 
   8.3.1 Leverage effect for stocks and the retarded model 
   8.3.2 Leverage effect for indices 
   8.3.3 Return-volume correlations 
  8.4 The Heston model:a model with volatility fluctuations and skew 
  8.5 Summary 
9 Cross-correlations 
  9.1 Correlation matrices and principal component analysis 
   9.1.1 Introduction 
   9.1.2 Gaussian correlated variables 
   9.1.3 Empirical correlation matrices 
  9.2 Non-Gaussian correlated variables 
   9.2.1 Sums of non Gaussian variables 
   9.2.2 Non-linear transformation of correlated Gaussian variables 
   9.2.3 Copulas 
   9.2.4 Comparison of the two models 
   9.2.5 Multivariate Student distributions 
   9.2.6 Multivariate Levy variables(*) 
   9.2.7 Weakly non Gaussian correlated variables(*) 
  9.3 Factors and clusters 
   9.3.1 One factor models 
   9.3.2 Multi-factor models 
   9.3.3 Partition around medoids 
   9.3.4 Eigenvector clustering 
   9.3.5 Maximum spanning tree 
  9.4 Summary 
  9.5 Appendix A:central limit theorem for random matrices 
  9.6 Appendix B: density of eigenvalues for random correlation matrices 
10 Risk measures 
  10.1 Risk measurement and diversification 
  10.2 Risk and volatility 
  10.3 Risk of loss, value at risk'(VaR) and expected shortfall 
   10.3.1 Introduction 
   10.3.2 Value-at-risk 
   10.3.3 Expected shortfall 
  10.4 Temporal aspects: drawdown and cumulated loss 
  10.5 Diversification and utility-satisfaction thresholds 
  10.6 Summary 
11 Extreme correlations and variety 
  11.1 Extreme event correlations 
   11.1.1 Correlations conditioned on large market moves 
   11.1.2 Real data and surrogate data 
   11.1.3 Conditioning on large individual stock returns:exceedance correlations 
   11.1.4 Tail dependence 
   11.1.5 Tail covariance(*) 
  11.2 Variety and conditional statistics of the residuals 
   11.2.1 The variety 
   11.2.2 The variety in the one-factor model 
   11.2.3 Conditional variety of the residuals 
   11.2.4 Conditional skewness of the residuals 
  11.3 Summary 
  11.4 Appendix C:some useful results on power-law variables 
12 Optimal portfolios 
  12.1 Portfolios of uncorrelated assets 
   12.1.1 Uncorrelated Gaussian assets 
   12.1.2 Uncorrelated'power-law' assets 
   12.1.3 'Exponential' assets 
   12.1.4 General case: optimal portfolio and VaR(*) 
  12.2 Portfolios of correlated assets 
   12.2.1 Correlated Gaussian fluctuations 
   12.2.2 Optimal portfolios with non-linear constraints(*) 
   12.2.3 'Power-law' fluctuations-linear model(*) 
   12.2.4 'Power-law' fluctuations-Student model(*) 
  12.3 Optimized trading 
  12.4 Value-at-risk-general non-linear portfolios(*) 
   12.4.1 Outline of the method: identifying worst cases 
   12.4.2 Numerical test of the method 
  12.5 Summary 
13 Futures and options: fundamental concepts 
  13.1 Introduction 
   13.1.1 Aim of the chapter 
   13.1.2 Strategies in uncertain conditions 
   13.1.3 Trading strategies and efficient markets 
  13.2 Futures and forwards 
   13.2.1 Setting the stage 
   13.2.2 Global financial balance 
   13.2.3 Riskless hedge 
   13.2.4 Conclusion:global balance and arbitrage 
  13.3 Options:definition and valuation 
   13.3.1 Setting the stage 
   13.3.2 Orders of magnitude 
   13.3.3 Quantitative analysis-option price 
   13.3.4 Real option prices, volatility smile and ‘implied’kurtosis 
   13.3.5 The case of an infinite kurtosis 
  13.4 Summary 
14 Options:hedging and residual risk 
  14.1 Introduction 
  14.2 Optimal hedging strategies 
   14.2.1 A simple case: static hedging 
   14.2.2 The general case and‘△’hedging 
   14.2.3 Global hedging vs. instantaneous hedging 
  14.3 Residual risk 
   14.3.1 The Black-Scholes miracle 
   14.3.2 The‘stop-loss’strategy does not work 
   14.3.3 Instantaneous residual risk and kurtosis risk 
   14.3.4 Stochastic volatility models 
  14.4 Hedging errors. A variational point of view 
  14.5 Other measures of risk-hedging and VaR (*) 
  14.6 Conclusion of the chapter 
  14.7 Summary 
  14.8 Appendix D 
15 Options: the role of drift and correlations 
  15.1 Influence of drift on optimally hedged option 
   15.1.1 A perturbative expansion 
   15.1.2 ‘Risk neutral’probability and martingales 
  15.2 Drift risk and delta-hedged options 
   15.2.1 Hedging the drift risk 
   15.2.2 The price of delta-hedged options 
   15.2.3 A general option pricing formula 
  15.3 Pricing and hedging in the presence of temporal correlations(*) 
   15.3.1 A general model of correlations 
   15.3.2 Derivative pricing with small correlations 
   15.3.3 The case of delta-hedging 
  15.4 Conclusion 
   15.4.1 Is the price of an option unique? 
   15.4.2 Should one always optimally hedge? 
  15.5 Summary 
  15.6 Appendix E 
16 Options:the Black and Scholes model 
  16.1 Ito calculus and the Black-Scholes equation 
   16.1.1 The Gaussian Bachelier model 
   16.1.2 Solution and Martingale 
   16.1.3 Time value and the cost of hedging 
   16.1.4 The Log-normal Black-Scholes model 
   16.1.5 General pricing and hedging in a Brownian world 
   16.1.6 The Greeks 
  16.2 Drift and hedge in the Gaussian model(*) 
   16.2.1 Constant drift 
   16.2.2 Price dependent drift and the Ornstein-Uhlenbeck paradox 
  16.3 The binomial model 
  16.4 Summary 
17 Options:some more specific problems 
  17.1 Other elements of the balance sheet 
   17.1.1 Interest rate and continuous dividends 
   17.1.2 Interest rate corrections to the hedging strategy 
   17.1.3 Discrete dividends 
   17.1.4 Transaction costs 
  17.2 Other types of options 
   17.2.1 ‘Put-call’parity 
   17.2.2 ‘Digital’options 
   17.2.3 ‘Asian’options 
   17.2.4 ‘American’options 
   17.2.5 ‘Barrier’options(*) 
   17.2.6 Other types of options 
  17.3 The ‘Greeks’and risk control 
  17.4 Risk diversification(*) 
  17.5 Summary 
18 Options:minimum variance Monte-Carlo 
  18.1 Plain Monte-Carlo 
   18.1.1 Motivation and basic principle 
   18.1.2 Pricing the forward exactly 
   18.1.3 Calculating the Greeks 
   18.1.4 Drawbacks of the method 
  18.2 An ‘hedged’Monte-Carlo method 
   18.2.1 Basic principle of the method 
   18.2.2 A linear parameterization of the price and hedge 
   18.2.3 The Black-Scholes limit 
  18.3 Non Gaussian models and purely historical option pricing 
  18.4 Discussion and extensions. Calibration 
  18.5 Summary 
  18.6 Appendix F:generating some random variables 
19 The yield curve 
  19.1 Introduction 
  19.2 The bond market 
  19.3 Hedging bonds with other bonds 
   19.3.1 The general problem 
   19.3.2 The continuous time Gaussian limit 
  19.4 The equation for bond pricing 
   19.4.1 A general solution 
   19.4.2 The Vasicek model 
   19.4.3 Forward rates 
   19.4.4 More general models 
  19.5 Empirical study of the forward rate curve 
   19.5.1 Data and notations 
   19.5.2 Quantities of interest and data analysis 
  19.6 Theoretical considerations(*) 
   19.6.1 Comparison with the Vasicek model 
   19.6.2 Market price of risk 
   19.6.3 Risk-premium and the θ law 
  19.7 Summary 
  19.8 Appendix G:optimal portfolio of bonds 
20 Simple mechanisms for anomalous price statistics 
  20.1 Introduction 
  20.2 Simple models for herding and mimicry 
   20.2.1 Herding and percolation 
   20.2.2 Avalanches of opinion changes 
  20.3 Models of feedback effects on price fluctuations 
   20.3.1 Risk-aversion induced crashes 
   20.3.2 A simple model with volatility correlations and tails 
   20.3.3 Mechanisms for long ranged volatility correlations 
  20.4 The Minority Game 
  20.5 Summary 
Index of most important symbols