购物车中还没有商品,赶紧选购吧!
压电材料高等力学(英文版) Qing-Hua Qin 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:压电材料高等力学(英文版)
ISBN:9787040344974
出版社:高等教育出版社
出版年月:2012-08
作者:Qing-Hua Qin
定价:89.00
页码:332
装帧:精装
版次:1
字数:480
开本:16开
套装书:否

《压电材料高等力学(英文版)》主要阐述线性压电材料的基本理论和基本研究方法,其中包括Trefftz有限元法、辛力学模型、哈密顿系统;讨论了纤维增 强压电复合材料、压电功能梯度材料、含币型裂纹压电材料、压电材料辛力学等问题。《压电材料高等力学(英文版)》的读者对象是物理、力学和材料类相关专业 的研究人员和研究生。

Front Matter
Chapter 1 Introduction to Piezoelectricity
  1.1 Background
  1.2 Linear theory of piezoelectricity
   1.2.1 Basic equations in rectangular coordinate system
   1.2.2 Boundary conditions
  1.3 Functionally graded piezoelectric materials
   1.3.1 Types of gradation
   1.3.2 Basic equations for two-dimensional FGPMs
  1.4 Fibrous piezoelectric composites
  References
Chapter 2 Solution Methods
  2.1 Potential function method
  2.2 Solution with Lekhnitskii formalism
  2.3 Techniques of Fourier transformation
  2.4 Trefftz finite element method
   2.4.1 Basic equations
   2.4.2 Assumed fields
   2.4.3 Element stiffness equation
  2.5 Integral equations
   2.5.1 Fredholm integral equations
   2.5.2 Volterra integral equations
   2.5.3 Abel’s integral equation
  2.6 Shear-lag model
  2.7 Hamiltonian method and symplectic mechanics
  2.8 State space formulation
  References
Chapter 3 Fibrous Piezoelectric Composites
  3.1 Introduction
  3.2 Basic formulations for fiber push-out and pull-out tests
  3.3 Piezoelectric fiber pull-out
   3.3.1 Relationships between matrix stresses and interfacial shear stress
   3.3.2 Solution for bonded region
   3.3.3 Solution for debonded region
   3.3.4 Numerical results
  3.4 Piezoelectric fiber push-out
   3.4.1 Stress transfer in the bonded region
   3.4.2 Frictional sliding
   3.4.3 PFC push-out driven by electrical and mechanical loading
   3.4.4 Numerical assessment
  3.5 Interfacial debonding criterion
  3.6 Micromechanics of fibrous piezoelectric composites
   3.6.1 Overall elastoelectric properties of FPCs
   3.6.2 Extension to include magnetic and thermal effects
  3.7 Solution of composite with elliptic fiber
   3.7.1 Conformal mapping.
   3.7.2 Solutions for thermal loading applied outside an elliptic fiber
   3.7.3 Solutions for holes and rigid fibers
  References
Chapter 4 Trefftz Method for Piezoelectricity
  4.1 Introduction
  4.2 Trefftz FEM for generalized plane problems.
   4.2.1 Basic field equations and boundary conditions
   4.2.2 Assumed fields
   4.2.3 Modified variational principle
   4.2.4 Generation of the element stiffness equation
   4.2.5 Numerical results
  4.3 Trefftz FEM for anti-plane problems
   4.3.1 Basic equations for deriving Trefftz FEM
   4.3.2 Trefftz functions
   4.3.3 Assumed fields
   4.3.4 Special element containing a singular corner
   4.3.5 Generation of element matrix
   4.3.6 Numerical examples
  4.4 Trefftz boundary element method for anti-plane problems
   4.4.1 Indirect formulation
   4.4.2 The point-collocation formulations of Trefftz boundary element method
   4.4.3 Direct formulation
   4.4.4 Numerical examples
  4.5 Trefftz boundary-collocation method for plane piezoelectricity
   4.5.1 General Trefftz solution sets
   4.5.2 Special Trefftz solution set for a problem with elliptic holes
   4.5.3 Special Trefftz solution set for impermeable crack problems
   4.5.4 Special Trefftz solution set for permeable crack problems
   4.5.5 Boundary collocation formulation
  References
Chapter 5 Symplectic Solutions for Piezoelectric Materials
  5.1 Introduction
  5.2 A symplectic solution for piezoelectric wedges
   5.2.1 Hamiltonian system by differential equation approach
   5.2.2 Hamiltonian system by variational principle approach
   5.2.3 Basic eigenvalues and singularity of stress and electric fields
   5.2.4 Piezoelectric bimaterial wedge
   5.2.5 Multi-piezoelectric material wedge
  5.3 Extension to include magnetic effect
   5.3.1 Basic equations and their Hamiltonian system
   5.3.2 Eigenvalues and eigenfunctions
   5.3.3 Particular solutions
  5.4 Symplectic solution for a magnetoelectroelastic strip
   5.4.1 Basic equations
   5.4.2 Hamiltonian principle
   5.4.3 The zero-eigenvalue solutions
   5.4.4 Nonzero-eigenvalue solutions
  5.5 Three-dimensional symplectic formulation for piezoelectricity
   5.5.1 Basic formulations
   5.5.2 Hamiltonian dual equations
   5.5.3 The zero-eigenvalue solutions
   5.5.4 Sub-symplectic system
   5.5.5 Nonzero-eigenvalue solutions
  5.6 Symplectic solution for FGPMs
   5.6.1 Basic formulations
   5.6.2 Eigenvalue properties of the Hamiltonian matrix H
   5.6.3 Eigensolutions corresponding to μ =0 and–α
   5.6.4 Extension to the case of magnetoelectroelastic materials
  References
Chapter 6 Saint-Venant Decay Problems in Piezoelectricity
  6.1 Introduction
  6.2 Saint-Venant end effects of piezoelectric strips
   6.2.1 Hamiltonian system for a piezoelectric strip
   6.2.2 Decay rate analysis
   6.2.3 Numerical illustration
  6.3 Saint-Venant decay in anti-plane dissimilar laminates
   6.3.1 Basic equations for anti-plane piezoelectric problem
   6.3.2 Mixed-variable state space formulation
   6.3.3 Decay rate of FGPM strip
   6.3.4 Two-layered FGPM laminates and dissimilar piezoelectric laminates
  6.4 Saint-Venant decay in multilayered piezoelectric laminates
   6.4.1 State space formulation
   6.4.2 Eigensolution and decay rate equation
  6.5 Decay rate of piezoelectric-piezomagnetic sandwich structures
   6.5.1 Basic equations and notations in multilayered structures
   6.5.2 Space state differential equations for analyzing decay rate
   6.5.3 Solutions to the space state differential equations
  References
Chapter 7 Penny-Shaped Cracks
  7.1 Introduction
  7.2 An infinite piezoelectric material with a penny-shaped crack
  7.3 A penny-shaped crack in a piezoelectric strip
  7.4 A fiber with a penny-shaped crack embedded in a matrix
  7.5 Fundamental solution for penny-shaped crack problem
   7.5.1 Potential approach
   7.5.2 Solution for crack problem
   7.5.3 Fundamental solution for penny-shaped crack problem
  7.6 A penny-shaped crack in a piezoelectric cylinder
   7.6.1 Problem statement and basic equation.
   7.6.2 Derivation of integral equations and their solution
   7.6.3 Numerical results and discussion
  7.7 A fiber with a penny-shaped crack and an elastic coating
   7.7.1 Formulation of the problem
   7.7.2 Fredholm integral equation of the problem
   7.7.3 Numerical results and discussion
  References
Chapter 8 Solution Methods for Functionally Graded Piezoelectric Materials
  8.1 Introduction
  8.2 Singularity analysis of angularly graded piezoelectric wedge
   8.2.1 Basic formulations and the state space equation
   8.2.2 Two AGPM wedges
   8.2.3 AGPM-EM-AGPM wedge system
   8.2.4 Numerical results and discussion
  8.3 Solution to FGPM beams
   8.3.1 Basic formulation
   8.3.2 Solution procedure
  8.4 Parallel cracks in an FGPM strip
   8.4.1 Basic formulation
   8.4.2 Singular integral equations and field intensity factors
  8.5 Mode Ⅲ cracks in two bonded FGPMs
   8.5.1 Basic formulation of the problem
   8.5.2 Impermeable crack problem
   8.5.3 Permeable crack problem
  References
Index
版权

材料与力学进展

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加