前辅文 
Multilinear Embedding and Hardy’s Inequality 
  William Beckner 
  1 Multilinear convolution inequalities 
  2 Diagonal trace restriction for Hardy’s inequality 
  3 Diagonal trace restriction for a multilinear fractional integral 
  4 Multilinear integrals and rearrangement 
  Acknowledgements 
  References 
Real-variable Theory of Orlicz-type Function Spaces Associated with Operators — A Survey 
  Der-Chen Chang, Dachun Yang and Sibei Yang 
  1 Introduction 
  2 Orlicz type spaces associated with operators satisfying Poisson estimates 
  3 Musielak-Orlicz type spaces associated with nonnegative self-adjoint operators satisfying Davies-Gaffney estimates 
  4 Musielak-Orlicz type spaces associated with operators satisfying bounded H∞-functional calculus 
  Acknowledgements 
  References 
Boundedness of Rough Strongly Singular Integral Operators 
  Jiecheng Chen, Dashan Fan and Meng Wang 
  1 Lp → Lq boundedness on rough operators 
  2 The phase function is not radial 
  3 The kernel satisfies a Lipschitz condition 
  4 ThekernelisC∞ 
  References 
On the Dimension Dependence of Some Weighted Inequalities 
  Alberto Criado and Fernando Soria 
  1 Introduction 
  2 The maximal operator over radial functions 
  3 Proofs of the main results 
  4 Kakeya maximal operator 
  Acknowledgements 
  References 
Lp Estimates for Multi-parameter and Multilinear Fourier Multipliers and Pseudo-differential Operators 
  Wei Dai, Guozhen Lu and Lu Zhang 
  1 Introduction 
  2 Lp estimates for multi-parameter and multi-linear paraproducts,multipliers and pseudo-differential operators 
  3 Lp estimates for bilinear and multi-parameter Hilbert transforms 
  4 Lp estimates for bilinear operators given by non-smooth symbols with one-dimensional singularity set in the range 1/2 < p ≤ 2/3 
  Acknowledgements 
  References 
Existence and Uniqueness Theory for the Fractional Schr¨odinger Equation on the Torus 
  Seckin Demirbas, MBurak Erdo?gan and Nikolaos Tzirakis 
  1 Introduction 
  2 Notation and preliminaries 
  3 Strichartz estimates 
  4 Local well-posedness via the Xs,b method 
  5 A smoothing estimate 
  6 Global well-posedness via high-low frequency decomposition 
  References 
Compactness of Maximal Commutators of Bilinear Calder′on-Zygmund Singular Integral Operators 
  Yong Ding, Ting Mei and Qingying Xue 
  1 Introduction and main results 
  2 The proof of Theorem1.1 
  3 The proof of Theorem1.2 
  References 
Weak Hardy Spaces 
  Loukas Grafakos and Danqing He 
  1 Introduction 
  2 Relevant background 
  3 The proof of Theorem1 
  4 Properties of Hp,∞ 
  5 Square function characterization of Hp,∞ 
  References 
A Local Tb Theorem with Vector-valued Testing Functions 
  Ana Grau de la Herr′an and Steve Hofmann 
  1 Introduction, history, preliminaries 
  2 Alocal Tb theorem with vector-valued testing functions 
  3 Application of Theorem 2.13 to the theory of layer potentials 
  4 Appendix: a generalized Christ-Journ′e T 1 Theorem for square 
  functions 
  References 
Non-homogeneous Local T 1 Theorem: Dual Exponents 
  Michael TLacey and Antti VV¨ah¨akangas 
  1 Introduction 
  2 Preliminaries 
  3 Perturbations and a basic decomposition 
  4 A stopping tree construction 
  5 The inside-paraproduct term 
  6 The inside-stopping/error term 
  7 The separated term 
  8 Preparations for the nearby term 
  9 The nearby-non-boundary term 
  10 The nearby-boundary term 
  References 
The Dynamics of the NLS with the Combined Terms in Five and Higher Dimensions 
  Changxing Miao, Guixiang Xu and Lifeng Zhao 
  1 Introduction 
  2 Preliminaries 
  3 Variational characterization 
  4 Part I: blow up for K? 
  5 Profile decomposition 
  6 Part II: GWP and scattering for K+ 
  Acknowledgements 
  References 
Sharp Estimates for Bilinear Fourier Multiplier Operators 
  Akihiko Miyachi and Naohito Tomita 
  1 Introduction 
  2 Product type Sobolev scale 
  3 EstimatesforL2 × L∞ → L2 
  4 EstimatesforH1 × L∞ → L1 
  5 EstimatesforL∞ × L∞ → BMO 
  6 EstimatesforH1 × H1 → L1/2 
  7 EstimatesforH1 × L2 → L2/3 
  8 Proof of the only if part 
  9 Isotropic Besov scale 
  References 
Weighted Estimates for Fractional Type Marcinkiewicz Integral Operators Associated to Surfaces 
  Yoshihiro Sawano and K?oz?o Yabuta 
  1 Introduction 
  2 Preparation for the proof of Theorem3 
  3 Proof of Theorem3 
  4 Proof of Proposition 1 
  5 Appendix: complex interpolation of homogeneous weighted 
  Triebel-Lizorkin spaces 
  References 
Commutator Estimates for the Dirichlet-to-Neumann Map in Lipschitz Domains 
  Zhongwei Shen 
  1 Introduction 
  2 Dahlberg’s bilinear estimate, Part I 
  3 Dahlberg’s bilinear estimate, Part II 
  4 Trilinear estimates and proof of Theorem 1.1 
  5 Proof of Theorem1.2 
  References 
A Note on Lp-norms of Quasi-modes 
  Christopher DSogge and Steve Zelditch 
  1 Introduction and main results 
  2 Proof that Proposition 1.3 implies Theorems 1.1 and 1.2 
  3 Proof of Proposition 1.3 
  4 Applications to breaking convexity bounds 
  References 
Astala’s Conjecture from the Point of View of Singular Integrals on Metric Spaces 
  Alexander Volberg 
  1 Introduction 
  2 A simple proof of Theorem 1The weighted estimate of Ahlfors-Beurling transform = unweighted estimate of a certain non-symmetric Calder′on-Zygmund operator on a metric space 
  3 T 1 theorem for non-homogeneous metric measure spaces 
  Acknowledgements 
  References 
C.S.Ifor Besov Spaces ˙Λp,qα (Rn) with _α, (p, q)_ ∈ (0, 1) × _(0, 1]×(0, 1] \ {(1, 1)}_ 
  Jie Xiao and Zhichun Zhai 
  1 Introduction 
  2 C.S.I 
  3 Applications 
  Acknowledgements 
  References 
A List of Ph.DStudents, Post-doctors and Visiting Scholars Supervised by Professor Shanzhen Lu and Foreign Collaborators Who Worked with Professor Shanzhen Lu