购物车中还没有商品,赶紧选购吧!
实分析(影印版) Emmanuele DiBenedetto 高等教育出版社
商品价格
降价通知
定价
手机购买
商品二维码
配送
北京市
服务
高教自营 发货并提供售后服务。
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:实分析(影印版)
ISBN:9787040226652
出版社:高等教育出版社
出版年月:2007-10
作者:Emmanuele DiBenedett
定价:39.50
页码:485
装帧:平装
版次:1
字数:560
开本:16开
套装书:否

为了更好地借鉴国外数学教育与研究的成功经验,促使我国数学教育与研究事业的发展,提高高等学校数学教育教学质量,“天元基金影印数学丛书”由数学天元基金赞助,经国内知名数学专家选择、推荐国外反映近代数学发展的优秀数学类教材,在国内影印出版。 本书是“天元基金影印数学丛书”之一,是一本内容十分翔实的实分析教材。它包含集论,点集拓扑,测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli-Arzela定理,Calderon-Zygmund分解定理,Fefferman-Stein定理,Marcinkiewicz内插定理等实分析中有用的内容。 本书内容由浅入深,读者具有扎实的数学分析知识基础便可学习本书,学完本书的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。

Preface
Acknowledgments
Preliminaries
  1 Countable sets
  2 The Cantor set
  3 Cardinality
  3.1 Some examples
  4 Cardinality of some infinite Cartesian products
  5 Ordenngs, the maximal principle, and the axiom of choice
  6 Well-ordering
  6.1 The first uncountable
  Problems and Complements
I Topologies and Metric Spaces
  1 Topological spaces
   1.1 Hausdorff and normal spaces
  2 Urysohn's lemma
  3 The Tietze extension theorem
  4 Bases,axioms of countability,and product topologies
   4.1 Product topologies
  5 Compact topological spaces
   5.1 Sequentially compact topological spaces
  6 Compact subsets of RN
  7 Continuous functions on countably compact spaces
  8 Products of compact spaces
  9 Vector spaces
   9.1 Convex sets
   9.2 Linear maps and isomorphisms
  10 Topological vector spaces
   10.1 Boundedness and continuity
  11 Linear functionals
  12 Finite-dimensional topological vector spaces
   12.1 Locally compact spaces
  13 Metric spaces
   13.1 Separation and axioms of countability
   13.2 Equivalent metrics
   13.3 Pseudometrics
  14 Metric vector spaces
   14.1 Maps between metric spaces
  15 Spaces of continuous functions
   15.1 Spaces of continuously differentiable functions
  16 On the structure of a complete metric space
  17 Compact and totally bounded metric spaces
   17.1 Precompact subsets of X
Problems and Complements
Ⅱ Measuring Sets
  1 Partitioning open subsets of RN
  2 Limits of sets, characteristic functions, and ●-algebras
  3 Measures
   3.1 Finite, ●-finite, and complete measures
   3.2 Some examples
  4 Outer measures sequential coverings
   4.1 The Lebes and outer measure in RN
   4 2 The Lebesgue-Stieltjes outer measure
  5 The Hausdorff outer measure in RN
  6 Constructing measures from outer measures
  7 The Lebesgue-Stieltjes measure on R 7.1 Borel measures
  8 The Hausdorff measure on RN
  9 Extending measures from semialgebras to a-algebras
   9.1 On the Lebesgue-Stieltjes and Hausdorff measures
  10 Necessary and sufficient conditions for measurability
  11 More on extensions from semialgebras to a -algebras
  12 The Lebesgue measure of sets in Rn
   12.1 A necessary and sufficient condition of measurability
  13 A nonmeasurable set
  14 Borel sets, measurable sets, and incomplete measures
   14.1 A continuous increasing function f:[0,1]●[0,1]
   14.2 On the preimage of a measurable set
   14.3 Proof of Propositions 14.1 and 14.2
  15 More on Borel measures
   15.1 Some extensions to general Borel measures
   15.2 Regular Bore] measures and Radon measures
  16 Regular outer measures and Radon measures
   16.1 More on Radon measures
  17 Vitali coverings
  18 The Besicovitch covering theorem
  19 Proof of Proposition 18.2
  20 The Besicovitch measure-theoretical covering theorem
Problems and Complements
III The Lebesgue Integral
  1 Measurable functions
  2 The Egorov theorem
   2.1 The Egorov theorem in RN
   2.2 More on Egorov's theorem
  3 Approximating measurable functions by simple functions
  4 Convergence in measure
  5 Quasi-continuous functions and Lusin's theorem
  6 Integral of simple functions
  7 The Lebesgue integral of nonnegative functions
  8 Fatou's lemma and the monotone convergence theorem
  9 Basic properties of the Lebesgue integral
  10 Convergence theorems
  11 Absolute continuity of the integral
  12 Product of measures
  13 On the structure of(A×B)
  14 The Fubini-Tonelli theorem
   14.1 The Tonelli version of the Fubini theorem
  15 Some applications of the Fubini-Tonelli theorem
   15.1 Integrals in terms of distribution functions
   15.2 Convolution integrals
   15.3 The Marcinkiewicz integral
  16 Signed measures and the Hahn decomposition.
  17 The Radon-Nikod●m theorem
  18 Decomposing measures
   18.1 The Jordan decomposition
   18.2 The Lebesgue decomposition
   18.3 A general version of the Radon-Nikod●m theorem
  Problems and Complements
Ⅳ Topics on Measurable Functions of Real Variables
  1 Functions of bounded variations
  2 Dini derivatives
  3 Differentiating functions of bounded variation
  4 Differentiating series of monotone functions
  5 Absolutely continuous functions
  6 Density of a measurable set
  7 Derivatives of integrals
  8 Differentiating Radon measures
  9 Existence and measurability of D●●
   9.1 Proof of Proposition 9.2
  10 Representing D●●
   10.1 Representing ●●for v●u
   10.2 Representing D●●for●●●
  11 The Lebesgue differentiation theorem
   11.1 Points of density
   11.2 Lebesgue points of an integrable function
  12 Regular families
  13 Convex functions
  14 Jensen's inequality
  15 Extending continuous functions
  16 The Weierstrass approximation theorem
  17 The Stone-Weierstrass theorem
  18 Proof of the Stone-Weierstrass theorem
   18.1 Proof of Stone's theorem
  19 The Ascoli-Arzelàtheorem
   19.1 Precompact subsets of C(●)
Problems and Complements
V The LP(E) Spaces
  1 Functions in LP(E) and their norms
   1.1 The spaces LP for 0<P<1
   1.2 The spaces L9 for q<0
  2 The Wider and Minkowski inequalities
  3 The reverse H61der and Minkowski inequalities
  4 More on the spaces LP and their norms
   4.1 Characterizing the norm●●●for 1●p<●
   4.2 The norm●●●●for E of finite measure
   4.3 The continuous version of the Minkowski inequality
  5 LP(E) for1●p < oo as normed spaces of equivalence classes
   5.1 LP(E) for 1●●●as a matrir tnpological vector space a metric topological vector siDace
  6 A metric topology for LP(E) when 0<P<1
   6.1 Open convex subsets of LP(E) when 0<p<1
  7 Convergence in LP(E) and completeness
  8 Separating LP(E) by simple functions
  9 Weak convergence in LP(E)
   9.1 A counterexample
  10 Weak lower semicontinuity of the norm in LP(E)
  11 Weak convergence and norm convergence
   11.1 Proof of Proposition 11.1 for p●2
   11.2 Proof of Proposition 11.1 for 1<P<2
  12 Linear functionals in LP(E)
  13 The Riesz representation theorem
   13.1 Proof of Theorem 13.1:The case where{X,A,u}is finite
   13.2 Proof of Theorem 13.1:The case where{X,A,u} is σ-finite
   13.3 Proof of Theorem13.1:The case where 1<P<●
  14 The Hanner and Clarkson inequalities
   14.1 Proof of Hanner's inequalities
   14.2 Proof of Clarkson's inequalities
  15 Uniform convexity of LP(E) for 1<P<●
  16 The Riesz representation theorem by uniform convexity
   16.1 Proof of Theorem 13.1:The case where 1<P<●
   16.2 The case where p=1 and E is of finite measure
   16.3 The case where p=1 and{X,A,u}is σ-finite
  17 Bounded linear functional in LP (E) for 0<P<1
   17.1 An alternate proof of Proposition 17.1
  18 If E●RN and p●[1,●),then LP(E) is separable
   18.1 ●●●is not separable
  19 Selecting weakly convergent subsequences
  20 Continuity of the translation in LP(E) for 1 < p<00
  21 Approximating functions in LP(E) with functions in C●(E)
  22 Characterizing precompact sets in LP(E)
Problems and Complements
VI Banach Spaces
  1 Normed spaces
   1.1 Seminorms and quotients
  2 Finite- and infinite-dimensional normed spaces
   2.1 A counterexample
   2.2 The Riesz lemma
   2.3 Finite-dimensional spaces
  3 Linear maps and functionals
  4 Examples of maps and functionals
   4.1 Functionals
   4.2 Linear functionals on C(●)
  5 Kernels of maps and functionals
  6 Equibounded families of linear maps
   6.1 Another proof of Proposition 6.1
  7 Contraction mappings
   7.1 Applications to some Fredholm integral equations
  8 The open mapping theorem
   8.1 Some applications
   8.2 The closed graph theorem
  9 The Hahn-Banach theorem
  10 Some consequences of the Hahn-Banach theorem
   10.1 Tangent planes
  11 Separating convex subsets of X
  12 Weak topologies
   12.1 Weakly and strongly closed convex sets
  13 Reflexive Banach spaces
  14 Weak compactness
   14.1 Weak sequential compactness
  15 The weak' topology
  16 The Alaoglu theorem
  17 Hilbert spaces
   17.1 The Schwarz inequality
   17.2 The parallelogram identity
  18 Orthogonal sets,representations,and functionals
   18.1 Bounded linear functionals on H
  19 Orthonormal systems
   19.1 The Bessel inequality
   19.2 Separable Hilbert spaces
  20 Complete orthonormal systems
   20.1 Equivalent notions of complete systems
   20.2 Maximal and complete orthonormal systems
   20.3 The Gram-Schmidt orthonormalization process
   20.4 On the dimension of a separable Hilbert space Problems and Complements
VII Spaces of Continuous Functions, Distributions, and Weak Derivatives
  1 Spaces of continuous functions
   1.1 Partition of unity
  2 Bounded linear functionals on Ca(RN)
   2.1 Remarks on functionals of the type (2.2) and (2.3)
   2.2 Characterizing Co(RN)'
  3 Positive linear functionals on Co(RN)
  4 Proof of Theorem 3.3:Constructing the measure u
  5 Proof of Theorem 3.3:Representing T as in (3.3)
  6 Characterizing bounded linear functionals on Co(RN)
   6.1 Locally bounded linear functionals on Co(RN)
   6.2 Bounded linear functionals on Co(RN)
  7 A topology for ●(E) for an open set E●RN
  8 A metric topology for ●(E)
   8.1 Equivalence of these topologies
   8.2 D(E) is not complete
  9 A topology for ●●(K) for a compact set ●●●
   9.1 A metric topology for ●(K)
   9.2 D(k) is complete
  10 Relating the topology of D(E) to the topology of D(K)
   10.1 Noncompleteness of D(E)
  11 The Schwartz topology of D(E)
  12 D(E) is complete
   12.1 Cauchy sequences in D(E)
   12.2 The topology of D(E) is not metrizable
  13 Continuous maps and functionals
   13.1 Distributions on E
   13.2 Continuous linear maps T:D(E)●D(E)
  14 Distributional derivatives
   14.1 Derivatives of distributions
   14.2 Some examples
   14.3 Miscellaneous remarks
  15 Fundamental Solutions
   15.1 The fundamental solution of the wave operator
   15.2 The fundamental solution of the Laplace operator
  16 Weak derivatives and main properties
  17 Domains and their boundaries
   17.1 ●E of class C1
   17.2 Positive geometric density
   17.3 The segment property
   17.4 The cone property
   17.5 On the various properties of ●E
  18 More on smooth approximations
  19 Extensions into RN
  20 The chain rule
  21 Steklov averagings
  22 Characterizing ●(E) for 1<P<●
   22.1 Remarks on ●(E)
  23 The Rademacher theorem
Problems and Complements
VIII Topics on Integrable Functions of Real Variables
  1 Vitali-type coverings
  2 The maximal function
  3 Strong LP estimates for the maximal function
   3.1 Estimates of weak and strong type
  4 The Calderbn-Zygmund decomposition theorem
  5 Functions of bounded mean oscillation
  6 Proof of Theorem 5.1
  7 The sharp maximal function
  8 Proof of the Fefferman-Stein theorem
  9 The Marcinkiewicz interpolation theorem
   9.1 Quasi-linear maps and interpolation
  10 Proof of the Marcinkiewicz theorem
  11 Rearranging the values of a function
  12 Basic properties of rearrangements
  13 Symmetric rearrangements
  14 A convolution inequality for rearrangements
   14.1 Approximations by simple functions
  15 Reduction to a finite union of intervals
  16 Proof of Theorem 14.1:The case where T+S

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加