本书主要讨论不同类型的自治和非自治不连续微分方程中的分岔。那些具有跳跃的微分方程既可以是右端点不连续的,也可以是在轨迹上不连续,或是方程解的区间常数近似的。本书的结果可以应用于各个领域,如神经网络、脑动力学、机械系统、天气现象、人口动力学等。毫无疑问,分岔理论应该进一步发展到不同类型的微分方程。在这个意义上,本书将是这个领域的首创。读者将从本书了解到该理论的最新成果,学会如何将该理论应用到不同类型的不连续微分方程的具体方法。此外,读者将学习到分析这些方程的非自治分岔情况的最新方法。 本书无论是对初学者还是该领域的专家都非常有帮助。对于初学者,像本科生和研究生,本书将是非常有益的,因为它提供了一个很深的印象即分岔理论不仅可以应用于离散和连续系统,也可应用于以各种不同方式组合的这些系统。对于该领域的专家,他们将在本书中发现一些强大的工具,这些工具可应用于冲击瞬间可变的不连续动力系统、有解分段常数化的一般类型的微分方程以及Filippov系统。本书对研究带脉冲系统中的分岔的学者也是非常有益的,因为这些分岔往往是非自治系统的。 |
Front Matter |
|
|
|
Marat Akhmet博士是土耳其中东技术大学数学系的教授,为动力模型、混沌理论和微分方程专家。近年来,他致力于研究神经网络、经济模型和机械系统的动力学。 |
|
|
|
|
|
|