前辅文
1 Representations of the GL2 Group of a p-adic Field
1. Admissible representations
2. The Kirillov model: preliminary construction
3. The commutativity lemma
4. The finiteness property
5. Whittaker functions
6. A theoremon the contragredient of a representation
7.supercuspidal representations
8. Introduction to the principalseries
9. A lemma on Fourier transforms
10. The principalseries and thespecial representations
11. The equivalence πμ1,μ2~ πμ2,μ1
12. The fundamental functional equation
13. Computation of γπ(χ,s) for the principalseries and the special representations
14. The local factors Lπ(χ,s)
15. The factors επ(χ,s)
16. The case ofspherical representations
17. Unitary representations: results
18. Unitary representations: thesupercuspidal case
19. Unitary representations in the principalseries
20. Unitary representations: thespecial case
2 The Archimedean Case
1. Admissible representations
2. The representations ρμ1,μ2
3. Irreducible components of ρμ1,μ2 (case F =R)
4. Irreducible components of ρμ1,μ2 (case F =C)
5. Kirillov model for an irreducible representation
6. The functions LW (g;χ,s)
7. Factors Lπ(χ,s)
8. Factors επ(χ,s)
3 TheGlobalTheory
1. Parabolic forms
2. Local decomposition of an irreducible representation of GA
3. The globalHecke algebra
4. GlobalWhittakermodels
5. Themultiplicity one theorem
6. Euler product attached to an irreducible representation of GA
7. The functional equation for Lπ(χ,s)
8. The converse of Theorem4