![]() |
本书是高等学校金融学专业系列教材之一。本书主要内容包括:导论、机器学习基础、Python编程基础、基于Python的机器学习软件包、国信iQuant量化交易平台、交易策略学习模型的数据准备、线性回归估值选股模型、逻辑回归收益率预测选股模型、决策树分类择时模型、朴素贝叶斯分类择时模型、支持向量机分类择时模型、K均值聚类分析选股模型、Apriori股票关联分析模型、BP神经网络择时模型、循环神经网络择时模型、长短期记忆择时交易模型、卷积神经网络择时交易模型、结语。 本书由浅入深,结合具体案例,将机器学习的理论模型应用于程序化交易,强调程序化交易策略的实用性。本书适合作为高等学校金融专业相关课程教材,也可作为程序化交易的深化读物。 |
![]() |
第一章导论001 |
|
![]() |
|
|
|
|
|
|
|
|
|