购物车中还没有商品,赶紧选购吧!
对合之书(影印版) Max-Albert Knus, Ale 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:对合之书(影印版)
ISBN:9787040534931
出版社:高等教育出版社
出版年月:2020-04
作者:Max-Albert Knus, Ale
定价:269.00
页码:624
装帧:精装
版次:1
字数:998
开本:16开
套装书:否

本书介绍了带对合的中心单代数理论,与线性代数群相关。它为任意域上线性代数群的最新研究提供了代数理论基础。对合被视为(埃尔米特)二次曲面的扭曲形式,导致了二次型的代数理论模型的新发展。除典型群外,书中还讨论了与三重对称性(triality)有关的现象,以及源自例外若尔当代数或复合代数的F4或G2型群。一些结果和概念在书中首次出现,特别是具有酉对合的代数的判别代数,以及D4型线性群代数理论上的对应物。 本书适合对中心单代数、线性代数群、非阿贝尔伽罗瓦上同调、复合代数或若尔当代数感兴趣的研究生和科研人员阅读参考。 本书特色: ? 未出版过的原始材料 ? 对代数理论和群理论的全面讨论 ? 关于历史观点和文献综述的大量注释 ? 可推广到更通用基环的有理方法 本书不仅是“对合之书”,也是“典型群之书”……是对文献的一个很好的补充。这里讨论的主题一直是被深入研究的对象。专家们需要一本参考书,而初学者也需要一个好的导引。本书满足了这两个需求……是一份非常有用的参考资料……这些结果尚未在其他地方发表……写得很好……除了很好阐述了与对合代数和典型群有关的许多基本结果,本书还包含许多新思想和新成果,这往往归功于作者本人。该主题非常漂亮而又至关重要,是当前被集中研究的对象。这项研究现在变得更加容易了,这要归功于四位作者的出色工作。 —Zentralblatt MATH

前辅文
Preface
  Introduction
  Conventions and Notations
Chapter I. Involutions and Hermitian Forms
  § 1. Central Simple Algebras
   l.A. Fundamental theorems
   l.B. One-sided ideals in central simple algebras
   l.C. Severi-Brauer varieties
  §2. Involutions
   2.A. Involutions of the first kind
   2.B. Involutions of the second kind
   2.C. Examples
   2.D. Lie and Jordan structures
  §3. Existence of Involutions
   3.A. Existence of involutions of the first kind
   3.B. Existence of involutions of the second kind
  §4. Hermitian Forms
   4.A. Adjoint involutions
   4.B. Extension of involutions and transfer
  §5. Quadratic Forms
   5.A. Standard identifications
   5.B. Quadratic pairs
  Exercises
  Notes
Chapter II. Invariants of Involutions
  §6. The Index
   6.A. Isotropic ideals
   6.B. Hyperbolic involutions
   6.C. Odd-degree extensions
  §7. The Discriminant
   7. A. The discriminant of orthogonal involutions
   7.B. The discriminant of quadratic pairs
  §8. The Clifford Algebra
   8.A. The split case
   8.B. Definition of the Clifford algebra
   8.C. Lie algebra structures
   8.D. The center of the Clifford algebra
   8.E. The Clifford algebra of a hyperbolic quadratic pair
  §9. The Clifford Bimodule
   9.A. The split case
   9.B. Definition of the Clifford bimodule
   9.C. The fundamental relations
  §10. The Discriminant Algebra
   10.A. The A-powers of a central simple algebra
   10.B. The canonical involution
   10.C. The canonical quadratic pair
   10.D. Induced involutions on A-powers
   10.E. Definition of the discriminant algebra
   10.F. The Brauer class of the discriminant algebra
  §11. Trace Form Invariants
   11.A. Involutions of the first kind
   l l . B . Involutions of the second kind
  Exercises
  Notes
Chapter III. Similitudes
  §12. General Properties
   12.A. The split case
   12.B. Similitudes of algebras with involution
   12.C. Proper similitudes
   12.D. Functorial properties
  §13. Quadratic Pairs
   13.A. Relation with the Clifford structures
   13.B. Clifford groups
   13.C. Multipliers of similitudes
  § 14. Unitary Involutions
   14.A. Odd degree
   14.B. Even degree
   14.C. Relation with the discriminant algebra
  Exercises
  Notes
Chapter IV. Algebras of Degree Four
  §15. Exceptional Isomorphisms
   15.A. Bi = d
   15.B. A\ = D2
   15.C. B2 = C2
   15.D. A3 = Ds
  §16. Biquaternion Algebras
   16.A. Albert forms
   16.B. Albert forms and symplectic involutions
   16.C. Albert forms and orthogonal involutions
  §17. Whitehead Groups
   17.A. SKi of biquaternion algebras
   17.B. Algebras with involution
  Exercises
  Notes
Chapter V. Algebras of Degree Three
  §18. Etale and Galois Algebras
   18.A. Etale algebras
   18.B. Galois algebras
   18.C. Cubic etale algebras
  §19. Central Simple Algebras of Degree Three
   19.A. Cyclic algebras
   19.B. Classification of involutions of the second kind
   19.C. Etale subalgebras
  Exercises
  Notes
Chapter VI. Algebraic Groups
  §20. Hopf Algebras and Group Schemes
   20.A. Group schemes
  §21. The Lie Algebra and Smoothness
   21.A. The Lie algebra of a group scheme
  §22. Factor Groups
   22.A. Group scheme homomorphisms
  §23. Automorphism Groups of Algebras
   23.A. Involutions
   23.B. Quadratic pairs
  §24. Root Systems
   24.A. Classification of irreducible root systems
  §25. Split Semisimple Groups
   25.A. Simple split groups of type A, B, C, D, F , and G
   25.B. Automorphisms of split semisimple groups
  §26. Semisimple Groups over an Arbitrary Field
   26.A. Basic classification results
   26.B. Algebraic groups of small dimension
  § 27. Tits Algebras of Semisimple Groups
   27.A. Definition of the Tits algebras
   27.B. Simply connected classical groups
   27.C. Quasisplit groups
  Exercises
  Notes
Chapter VII. Galois Cohomoiogy
  §28. Cohomoiogy of Profinite Groups
   28.A. Cohomoiogy sets
   28.B. Cohomoiogy sequences
   28.C. Twisting
   28.D. Torsors
  §29. Galois Cohomoiogy of Algebraic Groups
   29.A. Hilbert's Theorem 90 and Shapiro's lemma
   29.B. Classification of algebras
   29.C. Algebras with a distinguished subalgebra
   29.D. Algebras with involution
   29.E. Quadratic spaces
   29.F. Quadratic pairs
  §30. Galois Cohomology of Roots of Unity
   30.A. Cyclic algebras
   30.B. Twisted coefficients
   30.C. Cohomological invariants of algebras of degree three . . . .
  §31. Cohomological Invariants
   31.A. Connecting homomorphisms
   3l.B. Cohomological invariants of algebraic groups
  Exercises
  Notes
Chapter VIII. Composition and Triality
  §32. Nonassociative Algebras
  §33. Composition Algebras
   33.A. Multiplicative quadratic forms
   33.B. Unital composition algebras
   33.C. Hurwitz algebras
   33.D. Composition algebras without identity
  §34. Symmetric Compositions
   34.A. Para-Hurwitz algebras
   34.B. Petersson algebras
   34.C. Cubic separable alternative algebras
   34.D. Alternative algebras with unitary involutions
   34.E. Cohomological invariants of symmetric compositions . . . .
  §35. Clifford Algebras and Triality
   35.A. The Clifford algebra
   35.B. Similitudes and triality
   35.C. The group Spin and triality
  §36. Twisted Compositions
   36.A. Multipliers of similitudes of twisted compositions
   36.B. Cyclic compositions
   36.C. Twisted Hurwitz compositions
   36.D. Twisted compositions of type A'2
   36.E. The dimension 2 case
  Exercises
  Notes
Chapter IX. Cubic Jordan Algebras
  §37. Jordan Algebras
   37.A. Jordan algebras of quadratic forms
   37.B. Jordan algebras of classical type
   37.C. Freudenthal algebras
  §38. Cubic Jordan Algebras
   38.A. The Springer decomposition
  §39. The Tits Construction
   39.A. Symmetric compositions and Tits constructions
   39.B. Automorphisms of Tits constructions
  §40. Cohomological Invariants
   40.A. Invariants of twisted compositions
  §41. Exceptional Simple Lie Algebras
  Exercises
  Notes
Chapter X. Trialitarian Central Simple Algebras
  §42. Algebras of Degree 8
   42.A. Trialitarian triples
   42.B. Decomposable involutions
  §43. Trialitarian Algebras
   43.A. A definition and some properties
   43.B. Quaternionic trialitarian algebras
   43.C. Trialitarian algebras of type 2D^
  §44. Classification of Algebras and Groups of Type D4
   44.A. Groups of trialitarian type D4
   44.B. The Clifford invariant
  §45. Lie Algebras and Triality
   45.A. Local triality
   45.B. Derivations of twisted compositions
   45.C. Lie algebras and trialitarian algebras
  Exercise
  Notes
Bibliography
Index
Notation

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加