购物车中还没有商品,赶紧选购吧!
线性代数与矩阵:第二教程(影印版) Helene Shapiro 高等教育出版社 纯粹数学 应用数学 9787040570311
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:线性代数与矩阵:第二教程(影印版)
ISBN:9787040570311
出版社:高等教育出版社
出版年月:2022-02
作者:Helene Shapiro
定价:135.00
页码:344
装帧:精装
版次:1
字数:571
开本:16开
套装书:否

线性代数和矩阵理论是几乎每个数学领域(纯粹数学和应用数学)的基本工具。本书内容涵盖了核心主题,同时介绍了线性代数在其中扮演关键角色的一些领域,例如区组设计、有向图、纠错码和线性动力系统。本书具有以下特色:讨论了 Weyr 特征和 Weyr 典范形,以及它们与更有名的 Jordan 典范形的关系;利用块循环矩阵和有向图来证明非负不可约矩阵的特征值结构上的 Frobenius 定理;包含平衡不完全区组设计(BIBDs)、Hadamard 矩阵和强正则图等组合论题。此外本书还介绍了P-矩阵的 McCoy 定理、关于区组设计存在性的 Bruck-Ryser-Chowla 定理以及马尔可夫链。本书是为熟悉线性代数第一课堂知识、有兴趣学习更高级内容的读者编写的。 ---------------------------------------------------------------------------------------- 本书成功完成预期的目标,它为许多大学开设的线性代数第二课程提供了一些创新思路……下次教授此门课时,我将用本书作为教材。我强烈推荐这本书,它不仅可以作为教科书,还可作为第二课程教学大纲中新想法的来源。 —Rajesh Pereira, IMAGE

前辅文
Chapter 1. Preliminaries
  1.1. Vector Spaces
  1.2. Bases and Coordinates
  1.3. Linear Transformations
  1.4. Matrices
  1.5. The Matrix of a Linear Transformation
  1.6. Change of Basis and Similarity
  1.7. Transposes
  1.8. Special Types of Matrices
  1.9. Submatrices, Partitioned Matrices, and Block Multiplication
  1.10. Invariant Subspaces
  1.11. Determinants
  1.12. Tensor Products
  Exercises
Chapter 2. Inner Product Spaces and Orthogonality
  2.1. The Inner Product
  2.2. Length, Orthogonality, and Projection onto a Line
  2.3. Inner Products in Cn
  2.4. Orthogonal Complements and Projection onto a Subspace
  2.5. Hilbert Spaces and Fourier Series
  2.6. Unitary Tranformations
  2.7. The Gram–Schmidt Process and QR Factorization
  2.8. Linear Functionals and the Dual Space
  Exercises
Chapter 3. Eigenvalues, Eigenvectors, Diagonalization, and Triangularization
  3.1. Eigenvalues
  3.2. Algebraic and Geometric Multiplicity
  3.3. Diagonalizability
  3.4. A Triangularization Theorem
  3.5. The Gerˇsgorin Circle Theorem
  3.6. More about the Characteristic Polynomial
  3.7. Eigenvalues of AB and BA
  Exercises
Chapter 4. The Jordan and Weyr Canonical Forms
  4.1. A Theorem of Sylvester and Reduction to Block Diagonal Form
  4.2. Nilpotent Matrices
  4.3. The Jordan Form of a General Matrix
  4.4. The Cayley–Hamilton Theorem and the Minimal Polynomial
  4.5. Weyr Normal Form
  Exercises
Chapter 5. Unitary Similarity and Normal Matrices
  5.1. Unitary Similarity
  5.2. Normal Matrices—the Spectral Theorem
  5.3. More about Normal Matrices
  5.4. Conditions for Unitary Similarity
  Exercises
Chapter 6. Hermitian Matrices
  6.1. Conjugate Bilinear Forms
  6.2. Properties of Hermitian Matrices and Inertia
  6.3. The Rayleigh–Ritz Ratio and the Courant–Fischer Theorem
  6.4. Cauchy’s Interlacing Theorem and Other Eigenvalue Inequalities
  6.5. Positive Definite Matrices
  6.6. Simultaneous Row and Column Operations
  6.7. Hadamard’s Determinant Inequality
  6.8. Polar Factorization and Singular Value Decomposition
  Exercises
Chapter 7. Vector and Matrix Norms
  7.1. Vector Norms
  7.2. Matrix Norms
  Exercises
Chapter 8. Some Matrix Factorizations
  8.1. Singular Value Decomposition
  8.2. Householder Transformations
  8.3. Using Householder Transformations to Get Triangular, Hessenberg, and Tridiagonal Forms
  8.4. Some Methods for Computing Eigenvalues
  8.5. LDU Factorization
  Exercises
Chapter 9. Field of Values
  9.1. Basic Properties of the Field of Values
  9.2. The Field of Values for Two-by-Two Matrices
  9.3. Convexity of the Numerical Range
  Exercises
Chapter 10. Simultaneous Triangularization
  10.1. Invariant Subspaces and Block Triangularization
  10.2. Simultaneous Triangularization, Property P, and Commutativity
  10.3. Algebras, Ideals, and Nilpotent Ideals
  10.4. McCoy’s Theorem
  10.5. Property L
  Exercises
Chapter 11. Circulant and Block Cycle Matrices
  11.1. The J Matrix
  11.2. Circulant Matrices
  11.3. Block Cycle Matrices
  Exercises
Chapter 12. Matrices of Zeros and Ones
  12.1. Introduction: Adjacency Matrices and Incidence Matrices
  12.2. Basic Facts about (0, 1)-Matrices
  12.3. The Minimax Theorem of K¨onig and Egerv´ary
  12.4. SDRs, a Theorem of P. Hall, and Permanents
  12.5. Doubly Stochastic Matrices and Birkhoff’s Theorem
  12.6. A Theorem of Ryser
  Exercises
Chapter 13. Block Designs
  13.1. t-Designs
  13.2. Incidence Matrices for 2-Designs
  13.3. Finite Projective Planes
  13.4. Quadratic Forms and the Witt Cancellation Theorem
  13.5. The Bruck–Ryser–Chowla Theorem
  Exercises
Chapter 14. Hadamard Matrices
  14.1. Introduction
  14.2. The Quadratic Residue Matrix and Paley’s Theorem
  14.3. Results of Williamson
  14.4. Hadamard Matrices and Block Designs
  14.5. A Determinant Inequality, Revisited
  Exercises
Chapter 15. Graphs
  15.1. Definitions
  15.2. Graphs and Matrices
  15.3. Walks and Cycles
  15.4. Graphs and Eigenvalues
  15.5. Strongly Regular Graphs
  Exercises
Chapter 16. Directed Graphs
  16.1. Definitions
  16.2. Irreducibility and Strong Connectivity
  16.3. Index of Imprimitivity
  16.4. Primitive Graphs
  Exercises
Chapter 17. Nonnegative Matrices
  17.1. Introduction
  17.2. Preliminaries
  17.3. Proof of Perron’s Theorem
  17.4. Nonnegative Matrices
  17.5. Irreducible Matrices
  17.6. Primitive and Imprimitive Matrices
  Exercises
Chapter 18. Error-Correcting Codes
  18.1. Introduction
  18.2. The Hamming Code
  18.3. Linear Codes: Parity Check and Generator Matrices
  18.4. The Hamming Distance
  18.5. Perfect Codes and the Generalized Hamming Code
  18.6. Decoding
  18.7. Codes and Designs
  18.8. Hadamard Codes
  Exercises
Chapter 19. Linear Dynamical Systems
  19.1. Introduction
  19.2. A Population Cohort Model
  19.3. First-Order, Constant Coefficient, Linear Differential and Difference Equations
  19.4. Constant Coefficient, Homogeneous Systems
  19.5. Constant Coefficient, Nonhomogeneous Systems; Equilibrium Points
  19.6. Nonnegative Systems
  19.7. Markov Chains
Exercises
Bibliography
Index

“美国数学会经典影印系列”目前出版122种,其中2022年3月上架19种

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加