购物车中还没有商品,赶紧选购吧!
基础复分析:分析综合教程(第2A部分)(影印版) Barry Simon 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:基础复分析:分析综合教程(第2A部分)(影印版)
ISBN:9787040593006
出版社:高等教育出版社
出版年月:2023-03
作者:Barry Simon
定价:269.00
页码:672
装帧:精装
版次:1
字数:1060
开本
套装书:否

Poincaré 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第 2A 部分的主题是基础复分析。它交织了三条分别与 Cauchy、Riemann 和 Weierstrass 相关的分析线索。Cauchy 的观点侧重于单复变函数的微分和积分,核心主题是 Cauchy 积分公式和周线积分。对 Riemann 来说,复平面的几何是中心内容,核心主题是分式线性变换和共形映射。对 Weierstrass 来说,幂级数是王者,核心主题是解析函数空间、Weierstrass 乘积公式和 Hadamard 乘积公式以及椭圆函数的 Weierstrass 理论。本书还包含一些其他教材中经常缺失的主题,包括:当周线是 Jordan 区域边界时的 Cauchy 积分定理、连分数、Picard 大定理的两个证明、单值化定理、Ahlfors 函数、解析芽层、Jacobi 椭圆函数和 Weierstrass 椭圆函数。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。

前辅文
Chapter 1. Preliminaries
  §1.1. Notation and Terminology
  §1.2. Complex Numbers
  §1.3. Some Algebra, Mainly Linear
  §1.4. Calculus on R and Rn
  §1.5. Differentiable Manifolds
  §1.6. Riemann Metrics
  §1.7. Homotopy and Covering Spaces
  §1.8. Homology
  §1.9. Some Results from Real Analysis
Chapter 2. The Cauchy Integral Theorem: Basics
  §2.1. Holomorphic Functions
  §2.2. Contour Integrals
  §2.3. Analytic Functions
  §2.4. The Goursat Argument
  §2.5. The CIT for Star-Shaped Regions
  §2.6. Holomorphically Simply Connected Regions, Logs, and Fractional Powers
  §2.7. The Cauchy Integral Formula for Disks and Annuli
Chapter 3. Consequences of the Cauchy Integral Formula
  §3.1. Analyticity and Cauchy Estimates
  §3.2. An Improved Cauchy Estimate
  §3.3. The Argument Principle and Winding Numbers
  §3.4. Local Behavior at Noncritical Points
  §3.5. Local Behavior at Critical Points
  §3.6. The Open Mapping and Maximum Principle
  §3.7. Laurent Series
  §3.8. The Classification of Isolated Singularities;
  Casorati–Weierstrass Theorem
  §3.9. Meromorphic Functions
  §3.10. Periodic Analytic Functions
Chapter 4. Chains and the Ultimate Cauchy Integral Theorem
  §4.1. Homologous Chains
  §4.2. Dixon’s Proof of the Ultimate CIT
  §4.3. The Ultimate Argument Principle
  §4.4. Mesh-Defined Chains
  §4.5. Simply Connected and Multiply Connected Regions
  §4.6. The Ultra Cauchy Integral Theorem and Formula
  §4.7. Runge’s Theorems
  §4.8. The Jordan Curve Theorem for Smooth Jordan Curves
Chapter 5. More Consequences of the CIT
  §5.1. The Phragm´en–Lindel¨of Method
  §5.2. The Three-Line Theorem and the Riesz–Thorin Theorem
  §5.3. Poisson Representations
  §5.4. Harmonic Functions
  §5.5. The Reflection Principle
  §5.6. Reflection in Analytic Arcs; Continuity at Analytic Corners
  §5.7. Calculation of Definite Integrals
Chapter 6. Spaces of Analytic Functions
  §6.1. Analytic Functions as a Fr´echet Space
  §6.2. Montel’s and Vitali’s Theorems
  §6.3. Restatement of Runge’s Theorems
  §6.4. Hurwitz’s Theorem
  §6.5. Bonus Section: Normal Convergence of Meromorphic Functions and Marty’s Theorem
Chapter 7. Fractional Linear Transformations
  §7.1. The Concept of a Riemann Surface
  §7.2. The Riemann Sphere as a Complex Projective Space
  §7.3. PSL(2,C)
  §7.4. Self-Maps of the Disk
  §7.5. Bonus Section: Introduction to Continued Fractions and the Schur Algorithm
Chapter 8. Conformal Maps
  §8.1. The Riemann Mapping Theorem
  §8.2. Boundary Behavior of Riemann Maps
  §8.3. First Construction of the Elliptic Modular Function
  §8.4. Some Explicit Conformal Maps
  §8.5. Bonus Section: Covering Map for General Regions
  §8.6. Doubly Connected Regions
  §8.7. Bonus Section: The Uniformization Theorem
  §8.8. Ahlfors’ Function, Analytic Capacity and the Painlev´e Problem
Chapter 9. Zeros of Analytic Functions and Product Formulae
  §9.1. Infinite Products
  §9.2. A Warmup: The Euler Product Formula
  §9.3. The Mittag-Leffler Theorem
  §9.4. The Weierstrass Product Theorem
  §9.5. General Regions
  §9.6. The Gamma Function: Basics
  §9.7. The Euler–Maclaurin Series and Stirling’s Approximation
  §9.8. Jensen’s Formula
  §9.9. Blaschke Products
  §9.10. Entire Functions of Finite Order and the Hadamard Product Formula
Chapter 10. Elliptic Functions
  §10.1. A Warmup: Meromorphic Functions on C
  §10.2. Lattices and SL(2, Z)
  §10.3. Liouville’s Theorems, Abel’s Theorem, and Jacobi’s Construction
  §10.4. Weierstrass Elliptic Functions
  §10.5. Bonus Section: Jacobi Elliptic Functions
  §10.6. The Elliptic Modular Function
  §10.7. The Equivalence Problem for Complex Tori
Chapter 11. Selected Additional Topics
  §11.1. The Paley–Wiener Strategy
  §11.2. Global Analytic Functions
  §11.3. Picard’s Theorem via the Elliptic Modular Function
  §11.4. Bonus Section: Zalcman’s Lemma and Picard’s Theorem
  §11.5. Two Results in Several Complex Variables: Hartogs’ Theorem and a Theorem of Poincar´e
  §11.6. Bonus Section: A First Glance at Compact Riemann Surfaces
Bibliography
Symbol Index
Subject Index
Author Index
Index of Capsule Biographies

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加