购物车中还没有商品,赶紧选购吧!
Computational Conformal Geometry 丘成桐、顾险峰 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:Computational Conformal Geometry
ISBN:9787040231892
出版社:高等教育出版社
出版年月:2007-12
作者:丘成桐、顾险峰
定价:49.00
页码:296
装帧:精装
版次:1
字数:340
开本:16开
套装书:否

The launch of this Advanced Lectures in Mathematics series is aimed at keepingmathematicians informed of the latest developments in mathematics, as well asto aid in the learning of new mathematical topics by students all over the world.Each volume consists of either an expository monograph or a collection of signifi-cant introductions to important topics. This series emphasizes the history andsources of motivation for the topics under discussion, and also gives an overviewof the current status of research in each particular field. These volumes are thefirst source to which people will turn in order to learn new subjects and to dis-cover the latest results of many cutting-edge fields in mathematics.

前辅文
1 Introduction
  1.1 Overview of Theories
   1.1.1 Riemann Mapping
   1.1.2 Riemann Uniformization
   1.1.3 Shape Space
   1.1.4 General Geometric Structure
  1.2 Algorithms for Computing Conformal Mappings
  1.3 Applications
   1.3.1 Computer Graphics
   1.3.2 Computer Vision
   1.3.3 Geometric Modeling
   1.3.4 Medical Imaging
  Further Readings
Part I Theories
  2 Homotopy Group
   2.1 Algebraic Topological Methodology
   2.2 Surface Topological Classification
   2.3 Homotopy of Continuous-Mappings
   2.4 Homotopy Group
   2.5 Homotopy Invariant
   2.6 Covering Spaces
   2.7 Group Representation
   2.8 Seifert-van Kampen Theorem
   Problems
  3 Homology and Cohomology
   3.1 Simplicial Homology
   3.2 Cohomology
  4 Exterior Differential Calculus
   4.1 Smooth Manifold
   4.2 Differential Forms
   4.3 Integration
   4.4 Exterior Derivative and Stokes Theorem
   4.5 De Rham Cohomology Group
   4.6 Harmonic Forms
   4.7 Hodge Theorem
   Problems
  5 Differential Geometry of Surfaces
   5.1 Curve Theory
   5.2 Local Theory of Surfaces
   5.3 Orthonormal Movable Frame
   5.4 Covariant Differentiation
   5.5 Gauss-Bonnet Theorem
   5.6 Index Theorem of Tangent Vector Field
   5.7 Minimal Surface
   Problems
  6 Riemann Surface
   6.1 Riemann Surface
   6.2 Riemann Mapping Theorem
   6.3 Holomorphic One-Forms
   6.4 Period Matrix
   6.5 Riemann-Roch Theorem
   6.6 Abel Theorem
   6.7 Uniformization
   6.8 Hyperbolic Riemann Surface
   6.9 Teichmüller Space
   6.10 Teichmüller Space and Modular Space
   Problems
  7 Harmonic Maps and Surface Ricci Flow
   7.1 Harmonic Maps of Surfaces
   7.2 Surface Ricci Flow
   Problems
  8 Geometric Structure
   8.1 (X, G) Geometric Structure
   8.2 Development and Holonomy
   8.3 Affine Structures on Surfaces
   8.4 Spherical Structure
   8.5 Euclidean Structure
   8.6 Hyperbolic Structure
   8.7 Real Projective Structure
   Problems
Part II Algorithms
  9 Topological Algorithms
   9.1 Triangular Meshes
   9.2 Cut Graph
   9.3 Fundamental Domain
   9.4 Basis of Homotopy Group
   9.5 Gluing Two Meshes
   9.6 Universal Covering Space
   9.7 Curve Lifting
   9.8 Homotopy Detection
   9.9 The Shortest Loop
   9.10 Canonical Homotopy Group Generator
   Further Readings
   Problems
  10 Algorithms for Harmonic Maps
   10.1 Piecewise Linear Functional Space, Inner Product and Laplacian
   10.2 Newton's Method for Open Surface
   10.3 Non-Linear Heat Diffusion for Closed Surfaces
   10.4 Riemann Mapping
   10.5 Least Square Method for Solving Beltrami Equation
   10.6 General Surface Mapping
   Further Readings
   Problems
  11 Harmonic Forms and Holomorphic Forms
   11.1 Characteristic Forms
   11.2 Wedge Product
   11.3 Characteristic 1-Form
   11.4 Computing Cohomology Basis
   11.5 Harmonic 1-Form
   11.6 Hodge Star Operator
   11.7 Holomorphic 1-Form
   11.8 Inner Product Among 1-Forms
   11.9 Holomorphic Forms on Surfaces with Boundaries
   11.10 Zero Points and Critical Trajectories
   11.11 Flat Metric Induced by Holomorphic 1-Forms
   11.12 Conformal Invariants
   11.13 Conformal Mappings for Multi-Holed Annuli
   Further Readings
   Problems
  12 Discrete Ricci Flow
   12.1 Circle Packing Metric
   12.2 Discrete Gaussian Curvature
   12.3 Discrete Surface Ricci Flow
   12.4 Newton's Method
   12.5 Isometric Planar Embedding
   12.6 Surfaces with Boundaries
   12.7 Optimal Parameterization Using Ricci Flow
   12.8 Hyperbolic Ricci Flow
   12.9 Hyperbolic Embedding
   12.10 Hyperbolic Ricci Flow for Surfaces with Boundaries
   Further Readings
   Problems
A Major Algorithms
B Acknowledgement
Reference
Index

数学高级讲义ALM

本书配有详尽的程序示例且所有算法的源程序可在顾教授的网页,适合在图形学、几何学领域的高年级本科生、研究生及研究人员参考。

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加