前辅文
Preface
Introduction
Chapter 1. Probability Spaces
§1.1. Sets and Sigma-Fields
§1.2. Elementary Properties of Probability Spaces
§1.3. The Intuition
§1.4. Conditional Probability
§1.5. Independence
§1.6. Counting: Permutations and Combinations
§1.7. The Gambler’s Ruin
Chapter 2. Random Variables
§2.1. Random Variables and Distributions
§2.2. Existence of Random Variables
§2.3. Independence of Random Variables
§2.4. Types of Distributions
§2.5. Expectations I: Discrete Random Variables
§2.6. Moments, Means and Variances
§2.7. Mean, Median, and Mode
§2.8. Special Discrete Distributions
Chapter 3. Expectations II: The General Case
§3.1. From Discrete to Continuous
§3.2. The Expectation as an Integral
§3.3. Some Moment Inequalities
§3.4. Convex Functions and Jensen’s Inequality
§3.5. Special Continuous Distributions
§3.6. Joint Distributions and Joint Densities
§3.7. Conditional Distributions, Densities, and Expectations
Chapter 4. Convergence
§4.1. Convergence of Random Variables
§4.2. Convergence Theorems for Expectations
§4.3. Applications
Chapter 5. Laws of Large Numbers
§5.1. The Weak and Strong Laws
§5.2. Normal Numbers
§5.3. Sequences of Random Variables: Existence*
§5.4. Sigma Fields as Information
§5.5. Another Look at Independence
§5.6. Zero-one Laws
Chapter 6. Convergence in Distribution and the CLT
§6.1. Characteristic Functions
§6.2. Convergence in Distribution
§6.3. Lévy’s Continuity Theorem
§6.4. The Central Limit Theorem
§6.5. Stable Laws*
Chapter 7. Markov Chains and Random Walks
§7.1. Stochastic Processes
§7.2. Markov Chains
§7.3. Classification of States
§7.4. Stopping Times
§7.5. The Strong Markov Property
§7.6. Recurrence and Transience
§7.7. Equilibrium and the Ergodic Theorem for Markov Chains
§7.8. Finite State Markov Chains
§7.9. Branching Processes
§7.10. The Poisson Process
§7.11. Birth and Death Processes*
Chapter 8. Conditional Expectations
§8.1. Conditional Expectations
§8.2. Elementary Properties
§8.3. Approximations and Projections
Chapter 9. Discrete-Parameter Martingales
§9.1. Martingales
§9.2. System Theorems
§9.3. Convergence
§9.4. Uniform Integrability
§9.5. Applications
§9.6. Financial Mathematics I: The Martingale Connection*
Chapter 10. Brownian Motion
§10.1. Standard Brownian Motion
§10.2. Stopping Times and the Strong Markov Property
§10.3. The Zero Set of Brownian Motion
§10.4. The Reflection Principle
§10.5. Recurrence and Hitting Properties
§10.6. Path Irregularity
§10.7. The Brownian Infinitesimal Generator*
§10.8. Related Processes
§10.9. Higher Dimensional Brownian Motion
§10.10. Financial Mathematics II: The Black-Scholes Model*
§10.11. Skorokhod Embedding*
§10.12. Lévy’s Construction of Brownian Motion*
§10.13. The Ornstein-Uhlenbeck Process*
§10.14. White Noise and the Wiener Integral*
§10.15. Physical Brownian Motion*
§10.16. What Brownian Motion Really Does
Bibliography
Index