第二卷序言
译者序
符号约定
第15章 非阿贝尔规范理论
15.1 规范不变性
规范变换
结构常数
Jacobi恒等式
伴随表示
Yang-Mills理论
协变导数
场强张量
有限规范变换
与广义相对论的类比
15.2 规范理论拉格朗日量与单Lie群
规范场拉格朗日量
度规
反对称结构常数
单, 半单和U(1)Lie代数
规范代数结构
紧(致)代数
耦合常数
15.3 场方程与守恒律
守恒流
协变守恒流
非齐次场方程
齐次场方程
与能动量张量的类比
对称性生成元
15.4 量子化
初级和次级第一类约束
轴规范
Gribov多义性
正则变量
哈密顿量
再次引入Aα0
协变作用量
测度的规范不变性
15.5 De Witt-Faddeev-Popov方法
轴规范结果的推广
规范固定泛函的独立性
广义Feynman规范
顶点的形式
15.6 鬼
行列式作为路径积分
鬼场和反鬼场
鬼场的Feynman规则
修正作用量
幂次计数和可重正性
15.7 BRST对称性
辅助场hα
BRST变换
幂零性
新作用量的不变性
BRST上同调
规范固定的独立性
电动力学中的应用
BRST量子化
几何解释
15.8 BRST对称性的推广
De Witt记号
广义Faddeev-Popov-De Witt定理
BRST变换
新作用量
Slavnov算符
依赖场的结构常数
广义Jacobi恒等式
新作用量的不变性
规范固定的独立性
超出鬼场二阶的作用量
BRST量子化
BRST上同调
反BRST对称性
15.9 Batalin-Vilkovisky体系
开规范代数
反场
主方程
最小场和平庸对
包含反场的BRST变换
反括号
反正则变换
规范固定
量子主方程
A 关于Lie代数的一个定理
B Cartan目录
习题
参考文献
第16章 外场方法
16.1 量子有效作用量
流
所有图的生成泛函
连通图的生成泛函
Legendre变换
单粒子不可约图的生成泛函
量子修正场方程
树图求和
16.2 有效作用量的计算
常数场的有效势
单圈计算
发散
重正化
费米圈
16.3 能量诠释
绝热微扰
作为最小能量的有效势
凸性
局部最小值点间的不稳定性
线性诠释
16.4 有效作用量的对称性
对称性和重正化
Slavnov-Taylor恒等式
线性实现的对称性
费米场和流
习题
参考文献
第17章 规范理论的重正化
17.1 Zinn-Justin方程
BRST对称性的Slavnov-Taylor恒等式
外场Kn(x)
反括号
17.2 重正化:直接分析
递推方法
无穷大的BRST对称性条件
Kn(x)中的线性性质
新BRST对称性
无穷大的抵消
重正化常数
非线性规范条件
17.3 重正化:一般规范理论
“不可重正规范理论”可重正吗?
结构约束
变量的反正则变化
递推方法
上同调定理
17.4 背景场规范
新规范固定函数
真规范不变和形式规范不变
重正化常数
17.5 背景场规范下的单圈计算
单圈有效作用量
行列式
常数背景场的代数计算
规范场和耦合的重正化
无穷大的解释
习题
参考文献
第18章 重正化群方法
18.1 大对数来自何处?
零质量处的奇异性
“红外安全”的振幅和速率
喷注
来自重正化的零质量奇异性
重正化算符
18.2 滑动标度
Gell-Mann-Low重正化
重正化群方程
单圈计算
在?4理论中的应用
场重正化因子
在量子电动力学中的应用
有效精细结构常数
依赖场的重正化耦合
真空的不稳定性
18.3 各种渐近行为
有限能量处的奇异性
持续增长
有限耦合处的不动点
渐近自由
格点量子化
平庸性
β函数中的普适系数
18.4 多耦合与质量效应
不动点附近的行为
不变本征值
不可重正理论
有限维临界面
零质量处的质量重正化
质量的重正化群方程
18.5 临界现象
低波数
相关, 不相关以及边缘耦合
相变和临界面
临界温度
关联长度的行为
临界指数
4-ε维
Wilson-Fisher不动点
与实验对比
普适类
18.6 最小减除
重正化耦合的定义
β函数的计算
在电动力学中的应用
修正最小减除
不可重正相互作用
18.7 量子色动力学
夸克的色和味
β函数的计算
渐近自由
夸克和胶子的陷俘
喷注
e+-e-湮没至强子
偶然对称性
不可重正的修正
规范耦合的性质
gs和Λ的实验结果
18.8 改良微扰论
领头对数
对数的系数
习题
参考文献
第19章 自发破缺的整体对称性
19.1 简并真空
有效势的简并极小值
破缺对称性还是对称叠加?
大系统
远距离处的因子化
真空期望值的对角化
集团分解
19.2 Goldstone玻色子
破缺整体对称性意味着无质量玻色子
利用有效势的证明
利用流代数的证明
F因子和真空期望值
软Goldstone玻色子的相互作用
19.3 自发破缺的近似对称性
赝Goldstone玻色子
蝌蚪图
真空对齐
质量矩阵
正定性
19.4 作为Goldstone玻色子的π介子
量子色动力学的SU(2)×SU(2)手征对称性
破缺到同位旋
矢量和轴矢弱流
π介子衰变振幅
核子的轴形状因子
Goldberger-Treiman关系
真空对齐
夸克和介子质量
软π介子相互作用
历史注记
19.5 有效场论:π介子和核子
两个软π介子的流代数
有效拉格朗日量的流代数证明
σ-模型
变换到导数耦合
SU(2)×SU(2)的非线性实现
软π介子的有效拉格朗日量
有效拉格朗日量的直接证明
π介子的一般有效拉格朗日量
幂次计数
无质量π介子的π介子-π介子散射
F因子的识别
有效拉格朗日量中的π介子质量项
实π介子的π介子-π介子散射
π介子-π介子散射长度
π介子-核子有效拉格朗日量
协变导数
gA≠1
存在核子的幂次计数
π介子-核子散射长度
σ-项
同位旋破坏
Adler-Weisberger求和规则
19.6 有效场论:一般对称性的破缺
变换到导数耦合
Goldstone玻色子和右陪集
对称空间
Cartan分解
非线性变换规则
唯一性
协变导数
对称性破缺项
在夸克质量项上的应用
幂次计数
序参量
19.7 有效场论:SU(3)×SU(3)
SU(3)多重态和矩阵
破缺SU(3)×SU(3)的Goldstone玻色子
夸克质量项
赝标介子质量
电磁修正
夸克质量比
拉格朗日量中的高阶项
核子质量偏移
19.8 有效场论中的反常项
Wess-Zumino-Witten项
五维形式
整数耦合
唯一性和de Rham上同调
19.9 未破缺的对称性
质量滞留猜测
Vafa-Witten证明
非简并的小夸克质量
19.10 U(1)问题
手征U(1)对称性
对赝标质量的影响
习题
参考文献
第20章 算符乘积展开
20.1 展开:描述与推导
展开的说明
简单算符的主导地位
路径积分推导
20.2 动量流
两个大动量的?2贡献
重正化算符
系数函数的积分方程
多个大动量的?2贡献
20.3 系数函数的重正化群方程
推导与解
不动点处的性质
渐近自由的行为
20.4 系数函数的对称性
对称性自发破缺下的不变性
20.5 谱函数求和规则
定义谱函数
第一, 第二和第三类求和规则
对手征SU(N)×SU(N)的应用
与实验对比
20.6 深度非弹散射
形状因子W1和W2
深度非弹微分截面
Bjorken标度
部分子模型
Callan-Gross关系
求和规则
形状因子T1和T2
Tr和Wr的关系
对称张量算符
扭度
最小扭度算符
系数函数的计算
部分子分布函数的求和规则
Altarelli-Parisi微分方程
Bjorken标度的对数修正
20.7 重正化子
微扰论的Borel求和
瞬子和重正化子障碍
无质量?4理论中的瞬子
量子色动力学中的重正化子
A 动量流:一般情况
习题
参考文献
第21章 自发破缺的规范对称性
21.1 幺正规范
Goldstone玻色子的消除
矢量玻色子质量
未破缺对称性和无质量矢量玻色子
复表示
矢量场传播子
规范耦合为零时的连续性
21.2 可重正ξ-规范
规范固定函数
规范固定的拉格朗日量
传播子
21.3 电弱理论
轻子数守恒的对称性
SU(2)×U(1)
W±, Z0和光子
混合角
轻子-矢量玻色子耦合
W±和Z0的质量
μ子衰变
有效精细结构常数
中性流的发现
夸克流
Cabibbo角
c夸克
第三代
Kobayashi-Maskawa矩阵
W±和Z0的发现
精确实验检验
偶然对称性
不可重正修正
轻子数不守恒和中微子质量
重子数不守恒和质子衰变
21.4 定域对称性的动力学破缺
虚拟规范场
拉格朗日量的构造
幂次计数
一般的质量公式
例子:SU(2)×SU(2)
监督SU(2)×SU(2)
仿色
21.5 电弱-强统一
单规范群
规范耦合间的关系
重正化群流
混合角和统一质量
重子数和轻子数不守恒
21.6 超导
U(1)破缺到Z2
Goldstone模
有效拉格朗日量
电荷守恒
Meissner效应
穿透深度
临界场
通量量子化
零电阻
交流约瑟夫森效应
Ginzburg-Landau理论
关联长度
涡旋线
U(1)恢复
稳定性
Ⅰ型和Ⅱ型超导体
涡旋线的临界场
涡旋线中心附近的行为
费米面附近电子的有效理论
幂次计数
配对场的引入
有效作用量
能隙方程
重正化群方程
超导条件
A 一般幺正规范
习题
参考文献
第22章 反常
22.1 π0衰变问题
π0→2γ的速率
朴素估计
手征对称性压低
与实验比较
22.2 测度的变换:阿贝尔反常
手征和非手征变换
反常函数
Chern-Pontryagin密度
流的不守恒
非规范不变流的守恒
π0→2γ的计算
欧几里得时空下的计算
Atiyah-Singer指标定理
22.3 反常的直接计算:一般情况
费米子不守恒流
三角图计算
偏移矢量
对称反常
Bardeen形式
Adler-Bardeen定理
有质量费米子
另一种方法
整体反常
22.4 无反常的规范理论
规范反常必须为零
实和赝实表示
安全群
标准模型中的反常相消
引力反常
超荷赋值
另一个U(1)?
22.5 无质量束缚态
复合夸克和轻子?
未破缺的手征对称性
't Hooft反常匹配条件
未破缺手征SU(n)×SU(n)与SU(N)规范群的反常匹配
N=3的情况
手征SU(3)×SU(3)必须破缺
't Hooft退耦条件
质量滞留条件
22.6 相容性条件
Wess-Zumino条件
BRST上同调
对称反常的推导
下降方程
方程的解
Schwinger项
Zinn-Justin方程中的反常
反括号上同调
安全群无反常的代数证明
22.7 反常与Goldstone玻色子
反常匹配
反常Slavnov-Taylor恒等式的解
唯一性
反常Goldstone玻色子相互作用
SU(3)×SU(3)的情况
Wess-Zumino-Witten相互作用的推导
整数系数的计算
推广
习题
参考文献
第23章 扩展场构形
23.1 拓扑的应用
拓扑分类
同伦
斯格明子
Derrick定理
畴界
Bogomol'nyi不等式
宇宙学问题
瞬子
单极子和涡旋线
对称性恢复
23.2 同伦群
π1(M)的乘法规则
结合律
逆元
π1(S1)
拓扑守恒律
πk(M)的乘法规则
环绕数
23.3单极子
SU(2)/U(1)模型
环绕数
电磁场
磁单极矩
Kronecker指标
't Hooft-Polyakov单极子
另一个Bogomol'nyi不等式
BPS单极子
Dirac规范
电荷量子化
G/(H'×U(1))单极子
宇宙学问题
单极子粒子相互作用
G不是单连通群的G/H单极子
场内容的无关性
23.4 Cartan-Maurer积分不变量
不变量的定义
坐标系无关性
拓扑不变
可加性
S1→U(1)积分不变量
Bott定理
S3→SU(2)积分不变量
23.5 瞬子
Cartan-Maurer不变量的计算
Chern-Pontryagin密度
又一个Bogomol'nyi不等式
υ=1的解
一般环绕数
U(1)问题的解
电弱瞬子导致的重子数和轻子数不守恒
闵可夫斯基方法
势垒穿透
热涨落
23.6 θ角
集团分解
环绕数的叠加
P和CP不守恒
复费米子质量
小夸克质量引起的P和CP不守恒压低
中子电偶极矩
Peccei-Quinn对称性
轴子
轴子质量
轴子相互作用
23.7 扩展场构形附近的量子涨落
一般的涨落
集团参量
行列式因子
耦合常数依赖
集团参量计数
23.8 真空衰变
假真空和真真空
弹跳解
四维旋转不变性
作用量的符号
单位体积衰变速率
薄壁近似
A 欧几里得路径积分
B 同伦群表
习题
参考文献
人名索引
主题索引