购物车中还没有商品,赶紧选购吧!
【全2册】高等数学 第八版 下册+作业集 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:【全2册】高等数学 第八版 下册+作业集
ISBN:9787040591460
出版社:高等教育出版社
出版年月
作者:主编 谢惠扬 副主编 王学顺 王小春、同济大学数学科学学院
定价:85.40
页码:344
装帧:平装
版次:1
字数:420 千字
开本:16开
套装书:否

本作业集按照同济大学数学科学学院编写的《高等数学》教材章节顺序编排,配置不同类型、不同难度的作业题和综合练习题,方便教师布置、批改和收发作业,帮助学生扎实掌握高等数学的概念、理论和方法,提高独立思考和解决问题的能力。

本作业集适合高等学校各专业高等数学课程教学使用。

前辅文
第一章 函数与极限
  第一节 映射与函数
  第二节 数列的极限
  第三节 函数的极限
  第四节 无穷小与无穷大
  第五节 极限运算法则
  第六节 极限存在准则两个重要极限
  第七节 无穷小的比较
  第八节 函数的连续性与间断点
  第九节 连续函数的运算与初等函数的连续性
  第十节 闭区间上连续函数的性质
  第一章综合练习题
第二章 导数与微分
  第一节 导数概念
  第二节 函数的求导法则
  第三节 高阶导数
  第四节 隐函数及由参数方程所确定的函数的导数相关变化率
  第五节 函数的微分
  第二章综合练习题
第三章 微分中值定理与导数的应用
  第一节 微分中值定理
  第二节 洛必达法则
  第三节 泰勒公式
  第四节 函数的单调性与曲线的凹凸性
  第五节 函数的极值与最大值最小值
  第六节 函数图形的描绘
  第七节 曲率
  第八节 方程的近似解
  第三章综合练习题
第四章 不定积分
  第一节 不定积分的概念与性质
  第二节 换元积分法
  第三节 分部积分法
  第四节 有理函数的积分
  第五节 积分表的使用
  第四章综合练习题
第五章 定积分
  第一节 定积分的概念与性质
  第二节 微积分基本公式
  第三节 定积分的换元法和分部积分法
  第四节 反常积分
  *第五节 反常积分的审敛法Γ函数
  第五章综合练习题
第六章 定积分的应用
  第一节 定积分的元素法
  第二节 定积分在几何学上的应用
  第三节 定积分在物理学上的应用
  第六章综合练习题
第七章 微分方程
  第一节 微分方程的基本概念
  第二节 可分离变量的微分方程
  第三节 齐次方程
  第四节 一阶线性微分方程
  第五节 可降阶的高阶微分方程
  第六节 高阶线性微分方程
  第七节 常系数齐次线性微分方程
  第八节 常系数非齐次线性微分方程
  *第九节 欧拉方程
  *第十节 常系数线性微分方程组解法举例
  第七章综合练习题
高等数学(上册)模拟试卷一
高等数学(上册)模拟试卷二
第八章 向量代数与空间解析几何
  第一节 向量及其线性运算
  第二节 数量积 向量积*混合积
  第三节 平面及其方程
  第四节 空间直线及其方程
  第五节 曲面及其方程
  第六节 空间曲线及其方程
  第八章综合练习题
第九章 多元函数微分法及其应用
  第一节 多元函数的基本概念
  第二节 偏导数
  第三节 全微分
  第四节 多元复合函数的求导法则
  第五节 隐函数的求导公式
  第六节 多元函数微分学的几何应用
  第七节 方向导数与梯度
  第八节 多元函数的极值及其求法
  *第九节 二元函数的泰勒公式
  *第十节 最小二乘法
  第九章综合练习题
第十章 重积分
  第一节 二重积分的概念与性质
  第二节 二重积分的计算法
  第三节 三重积分
  第四节 重积分的应用
  *第五节 含参变量的积分
  第十章综合练习题
第十一章 曲线积分与曲面积分
  第一节 对弧长的曲线积分
  第二节 对坐标的曲线积分
  第三节 格林公式及其应用
  第四节 对面积的曲面积分
  第五节 对坐标的曲面积分
  第六节 高斯公式*通量与散度
  第七节 斯托克斯公式*环流量与旋度
  第十一章综合练习题
第十二章 无穷级数
  第一节 常数项级数的概念和性质
  第二节 常数项级数的审敛法
  第三节 幂级数
  第四节 函数展开成幂级数
  第五节 函数的幂级数展开式的应用
  *第六节 函数项级数的一致收敛性及一致收敛级数的基本性质
  第七节 傅里叶级数
  第八节 一般周期函数的傅里叶级数
  第十二章综合练习题
高等数学(下册)模拟试卷一
高等数学(下册)模拟试卷二

如果您在学习过程中,需要参考解答过程,可以登录以下网址:https://pan.hep.com.cn/f/23cf38e3a06e403abe79/,下载本书参考答案,希望对您的学习有所帮助。

本书是同济大学数学科学学院编《高等数学》第八版,内容深广度符合2014年版“工科类本科数学基础课程教学基本要求”,适合高等院校工科类各专业教学使用。

本书第七版曾获首届全国教材建设奖全国优秀教材特等奖,在保持原书结构合理、逻辑清晰、叙述严谨、例题丰富等特色的基础上,对第七版进行了一次细心的修订:少数地方作了一些必要的修改,个别章节补充了例题;对习题进行了适当的调整和补充,更换了少量习题;附录增加了一些初等数学内容介绍;增加了可通过扫描二维码查阅的释疑解难、例题精讲等数字教学资源。经过修订,本书更加完善,能更好地满足当前的教学需要。

本书分上、下两册出版,下册包括向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数等内容,书末还附有部分习题参考答案与提示。

第八章 向量代数与空间解析几何
  第一节 向量及其线性运算
   一、向量的概念
   二、向量的线性运算
   三、空间直角坐标系
   四、利用坐标作向量的线性运算
   五、向量的模、方向角、投影
   习题8-1
  第二节 数量积 向量积 *混合积
   一、两向量的数量积
   二、两向量的向量积
   *三、向量的混合积
   习题8-2
  第三节 平面及其方程
   一、曲面方程与空间曲线方程的概念
   二、平面的点法式方程
   三、平面的一般方程
   四、两平面的夹角
   习题8-3
  第四节 空间直线及其方程
   一、空间直线的一般方程
   二、空间直线的对称式方程与参数方程
   三、两直线的夹角
   四、直线与平面的夹角
   五、杂例
   习题8-4
  第五节 曲面及其方程
   一、曲面研究的基本问题
   二、旋转曲面
   三、柱面
   四、二次曲面
   习题8-5
  第六节 空间曲线及其方程
   一、空间曲线的一般方程
   二、空间曲线的参数方程
   三、空间曲线在坐标面上的投影
   习题8-6
  总习题八
第九章 多元函数微分法及其应用
  第一节 多元函数的基本概念
   一、平面点集 *n维空间
   二、多元函数的概念
   三、多元函数的极限
   四、多元函数的连续性
   习题9-1
  第二节 偏导数
   一、偏导数的定义及其计算法
   二、高阶偏导数
   习题9-2
  第三节 全微分
   一、全微分的定义
   *二、全微分在近似计算中的应用
   习题9-3
  第四节 多元复合函数的求导法则
   习题9-4
  第五节 隐函数的求导公式
   一、一个方程的情形
   二、方程组的情形
   习题9-5
  第六节 多元函数微分学的几何应用
   一、一元向量值函数及其导数
   二、空间曲线的切线与法平面
   三、曲面的切平面与法线
   习题9-6
  第七节 方向导数与梯度
   一、方向导数
   二、梯度
   习题9-7
  第八节 多元函数的极值及其求法
   一、多元函数的极值及最大值与最小值
   二、条件极值 拉格朗日乘数法
   习题9-8
  *第九节 二元函数的泰勒公式
   一、二元函数的泰勒公式
   二、极值充分条件的证明
   *习题9-9
  *第十节 最小二乘法
   *习题9-10
  总习题九
第十章 重积分
  第一节 二重积分的概念与性质
   一、二重积分的概念
   二、二重积分的性质
   习题10-1
  第二节 二重积分的计算法
   一、利用直角坐标计算二重积分
   二、利用极坐标计算二重积分
   *三、二重积分的换元法
   习题10-2
  第三节 三重积分
   一、三重积分的概念
   二、三重积分的计算
   习题10-3
  第四节 重积分的应用
   一、曲面的面积
   二、质心
   三、转动惯量
   四、引力
   习题10-4
  *第五节 含参变量的积分
   *习题10-5
  总习题十
第十一章 曲线积分与曲面积分
  第一节 对弧长的曲线积分
   一、对弧长的曲线积分的概念与性质
   二、对弧长的曲线积分的计算法
   习题11-1
  第二节 对坐标的曲线积分
   一、对坐标的曲线积分的概念与性质
   二、对坐标的曲线积分的计算法
   三、两类曲线积分之间的联系
   习题11-2
  第三节 格林公式及其应用
   一、格林公式
   二、平面上曲线积分与路径无关的条件
   三、二元函数的全微分求积
   *四、曲线积分的基本定理
   习题11-3
  第四节 对面积的曲面积分
   一、对面积的曲面积分的概念与性质
   二、对面积的曲面积分的计算法
   习题11-4
  第五节 对坐标的曲面积分
   一、对坐标的曲面积分的概念与性质
   二、对坐标的曲面积分的计算法
   三、两类曲面积分之间的联系
   习题11-5
  第六节 高斯公式 *通量与散度
   一、高斯公式
   *二、沿任意闭曲面的曲面积分为零的条件
   *三、通量与散度
   习题11-6
  第七节 斯托克斯公式 *环流量与旋度
   一、斯托克斯公式
   *二、空间曲线积分与路径无关的条件
   *三、环流量与旋度
   习题11-7
  总习题十一
第十二章 无穷级数
  第一节 常数项级数的概念和性质
   一、常数项级数的概念
   二、收敛级数的基本性质
   *三、柯西审敛原理
   习题12-1
  第二节 常数项级数的审敛法
   一、正项级数及其审敛法
   二、交错级数及其审敛法
   三、绝对收敛与条件收敛
   *四、绝对收敛级数的性质
   习题12-2
  第三节 幂级数
   一、函数项级数的概念
   二、幂级数及其收敛性
   三、幂级数的运算
   习题12-3
  第四节 函数展开成幂级数
   习题12-4
  第五节 函数的幂级数展开式的应用
   一、近似计算
   二、微分方程的幂级数解法
   三、欧拉公式
   习题12-5
  *第六节 函数项级数的一致收敛性及一致收敛级数的基本性质
   一、函数项级数的一致收敛性
   二、一致收敛级数的基本性质
   *习题12-6
  第七节 傅里叶级数
   一、三角级数 三角函数系的正交性
   二、函数展开成傅里叶级数
   三、正弦级数和余弦级数
   习题12-7
  第八节 一般周期函数的傅里叶级数
   一、周期为2l的周期函数的傅里叶级数
   *二、傅里叶级数的复数形式
   习题12-8
  总习题十二
部分习题参考答案与提示

“十一五”国家规划教材

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加