购物车中还没有商品,赶紧选购吧!
Classical Mechanics 3rd edition 影印版 经典力学
商品价格
降价通知
定价
手机购买
商品二维码
配送
北京市
服务
高教自营 发货并提供售后服务。
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:Classical Mechanics(3rd edition)(影印版)经典力学(第三版)
ISBN:9787040160918
出版社:高等教育出版社
出版年月:2005-02
作者:Goldstein
定价:72.00
页码:660
装帧:平装
版次:1
字数:850
开本:16开
套装书:否
https://gjs.bg-online.com.cn/blobdata/20241111/30DF260358D24BC7B2A7EECBC4BB1E81.jpg

美国哥伦比亚州大学Herbert Goldstein编著的《经典力学》(Classical Mechanics)是一本有着很高知名度的经典力学教材,长期以来被世界上多所大学选用。本影印版是2002年出版的第3版。与前两版相比,第3版在保留基本经典力学内容的基础上,做了不少调整。例如,增加了混沌一章;引入了一些对新研究问题的方法的讨论,例如张量、群论的等;对于第二版中的一些内容做了适当的压缩和调整 全书共13章,可作为为物理类专业经典力学课程的教材,尤其适合开展双语教学的学校,对于有志出国深造的人员也是一本必不可少的参考书。

1 Survey of the Elementary Principles
  1.1 Mechanics of a Particle
  1.2 Mechanics of a System of Particles
  1.3 Constraints
  1.4 D’Alembert’s Principle and Lagrange's Equations
  1.5 Velocity-Dependent Potentials and the Dissipation Function
  1.6 Simple Applications of the Lagrangian Formulation
2 Variational Principles and Lagrange’s Equations
  2.1 Hamilton’s Principle
  2.2 Some Techniques of the Calculus of Variations
  2.3 Derivation of Lagrange’s Equations from Hamilton's Principle
  2.4 Extension of Hamilton’s Principle to Nonholonomic Systems
  2.5 Advantages of a Variational Principle Formulation
  2.6 Conservation Theorems and Symmetry Properties
  2.7 Energy Function and the Conservation of Energy
3 The Central Force Problem
  3.1 Reduction to the Equivalent One-Body Problem
  3.2 The Equations of Motion and First Integrals
  3.3 The Equivalent One-Dimensional Problem, and Classification of Orbits
  3.4 The Virial Theorem
  3.5 The Differential Equation for the Orbit, and Integrable Power-Law Potentials
  3.6 Conditions for Closed Orbits (Bertrand’s Theorem)
  3.7 The Kepler Problem: Inverse-Square Law of Force
  3.8 The Motion in Time in the Kepler Problem
  3.9 The Laplace-Runge-Lenz Vector
  3.10 Scattering in a Central Force Field
  3.11 Transformation of the Scattering Problem to Laboratory Coordinates
  3.12 The Three-Body Problem
4 The Kinematics of Rigid Body Motion
  4.1 The Independent Coordinates of a Rigid Body
  4.2 Orthogonal Transformations
  4.3 Formal Properties of the Transformation Matrix
  4.4 The Eiller Angles
  4.5 The Cayley-Klein Parameters and Related Quantities
  4.6 Euler’s Theorem on the Motion of a Rigid Body
  4.7 Finite Rotations
  4.8 Infinitesimal Rotations
  4.9 Rate of Change of a Vector
  4.10 The Coriolis Effect
5 The Rigid Body Equations of Motion
  5.1 Angular Momentum and Kinetic Energy of Motion about a Point
  5.2 Tensors
  5.3 The Inertia Tensor and the Moment of Inertia
  5.4 The Eigenvalues of the Inertia Tensor and the Principal Axis Transformation
  5.5 Solving Rigid Body Problems and the Euler Equations of Motion
  5.6 Torque-free Motion of a Rigid Body
  5.7 The Heavy Symmetrical Top with One Point Fixed
  5.8 Precession of the Equinoxes and of Satellite Orbits
  5.9 Precession of Systems of Charges in a Magnetic Field
6 Oscillations
  6.1 Formulation of the Problem
  6.2 The Eigenvalue Equation and the Principal Axis Transformation
  6.3 Frequencies of Free Vibration, and Normal Coordinates
  6.4 Free Vibrations of a Linear Triatomic Molecule
  6.5 Forced Vibrations and the Effect of Dissipative Forces
  6.6 Beyond Small Oscillations: The Damped Driven Pendulum and the Josephson Junction
7 The Classical Mechanics of the Special Theory of Relativity
  7.1 Basic Postulates of the Special Theory
  7.2 Lorentz Transformations
  7.3 Velocity Addition and Thomas Precession
  7.4 Vectors and the Metric Tensor
  7.5 1-Forms and Tensors
  7.6 Forces in the Special Theory; Electromagnetism
  7.7 Relativistic Kinematics of Collisions and Many-Particle Systems
  7.8 Relativistic Angular Momentum
  7.9 The Lagrangian Formulation of Relativistic Mechanics
  7.10 Co variant Lagrangian Formulations
  7.11 Introduction to the General Theory of Relativity
8 The Hamilton Equations of Motion
  8.1 Legendre Transformations and the Hamilton Equations of Motion
  8.2 Cyclic Coordinates and Conservation Theorems
  8.3 Routh’s Procedure
  8.4 The Hamiltonian Formulation of Relativistic Mechanics
  8.5 Derivation of Hamilton’s Equations from a Variational Principle
  8.6 The Principle of Least Action
9 Canonical Transformations
  9.1 The Equations of Canonical Transformation
  9.2 Examples of Canonical Transformations
  9.3 The Harmonic Oscillator
  9.4 The Symplectic Approach to Canonical Transformations
  9.5 Poisson Brackets and Other Canonical Invariants
  9.6 Equations of Motion, Infinitesimal Canonical Transformations, and Conservation Theorems in the Poisson Bracket Formulation
  9.7 The Angular Momentum Poisson Bracket Relations
  9.8 Symmetry Groups of Mechanical Systems
  9.9 Liouville’s Theorem
10 Hamilton-Jacobi Theory and Action-Angle Variables
  10.1 The Hamilton-Jacobi Equation for Hamilton’s Principal Function
  10.2 The Harmonic Oscillator Problem as an Example of the Hamilton-Jacobi Method
  10.3 The Hamilton-Jacobi Equation for Hamilton’s Characteristic Function
  10.4 Separation of Variables in the Hamilton-Jacobi Equation
  10.5 Ignorable Coordinates and the Kepler Problem
  10.6 Action-angle Variables in Systems of One Degree of Freedom
  10.7 Action-Angle Variables for Completely Separable Systems
  10.8 The Kepler Problem in Action-angle Variables
11 Classical Chaos
  11.1 Periodic Motion
  11.2 Perturbations and the Kolmnogorov-Arnold-Moser Theorem
  11.3 Attractors
  11.4 Chaotic Trajectories and Liapunov Exponents
  11.5 Poincaré Maps
  11.6 Henon-Heiles Hamiltonian
  11.7 Bifurcations, Driven-damped Harmonic Oscillator, and Parametric Resonance
  11.8 The Logistic Equation
  11.9 Fractals and Dimensionality
12 Canonical Perturbation Theory
  12.1 Introduction
  12.2 Time-dependent Perturbation Theory
  12.3 Illustrations of Time-dependent Perturbation Theory
  12.4 Time-independent Perturbation Theory
  12.5 Adiabatic Invariants
13 Introduction to the Lagrangian and Hamiltonian Formulations for Continuous Systems and Fields
  13.1 The Transition from a Discrete to a Continuous System
  13.2 The Lagrangian Formulation for Continuous Systems
  13.3 The Stress-energy Tensor and Conservation Theorems
  13.4 Hamiltonian Formulation
  13.5 Relativistic Field Theory
  13.6 Examples of Relativistic Field Theories
  13.7 Noether’s Theorem
Appendix A Euler Angles in Alternate Conventions and Cayley-Klein Parameters
Appendix B Groups and Algebras
  Selected Bibliography Author
  Index Subject
  Index

世界优秀教材中国版

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加