购物车中还没有商品,赶紧选购吧!
几何群论(影印版) Mladen Bestvina,Michah Sageev,Karen Vogtmann 编 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:几何群论(影印版)
ISBN:9787040593105
出版社:高等教育出版社
出版年月:2023-03
作者:Mladen Bestvina,Mich
定价:169.00
页码:424
装帧:精装
版次:1
字数:700
开本
套装书:否

几何群论是指利用来自拓扑、几何、动力学和分析的工具研究离散群。这一领域发展非常迅速,本书对在这一发展中发挥了关键作用的各种主题进行了介绍和概述。 本书包含了帕克城数学研究所关于几何群论课程的讲义。该研究所开设了由该领域的专家提供的一系列密集的短期课程,旨在向学生介绍令人兴奋的、最新的数学研究。这些讲座与其他地方的标准课程不重复。该课程从适合研究生的导论水平开始,并引导到目前活跃的研究课题。本书的文章包括对CAT(0)立方体复形和群、现代小消去理论、一般CAT(0)空间的等距群的介绍,以及在映射类群和CAT(0)群的背景下对幂零亏格的讨论。一门课程概述准等距刚性,其他课程包括对外层空间的几何的探索、算术群的作用、关于格和局部对称空间的讲座、标记长度谱和扩展图,tau性质和近似群。本书是对几何群论感兴趣的研究生和研究人员的宝贵资源。

前辅文
Mladen Bestvina, Michah Sageev, Karen Vogtmann Introduction
Michah Sageev CAT(0) Cube Complexes and Groups
  Introduction
  Lecture 1. CAT(0) cube complexes and pocsets
   1. The basics of NPC and CAT(0) complexes
   2. Hyperplanes
   3. The pocset structure
  Lecture 2. Cubulations: from pocsets to CAT(0) cube complexes
   1. Ultrafilters
   2. Constructing the complex from a pocset
   3. Examples of cubulations
   4. Cocompactness and properness
   5. Roller duality
  Lecture 3. Rank rigidity
   1. Essential cores
   2. Skewering
   3. Single skewering
   4. Flipping
   5. Double skewering
   6. Hyperplanes in sectors
   7. Proving rank rigidity
  Lecture 4. Special cube complexes
   1. Subgroup separability
   2. Warmup - Stallings’ proof of Marshall Hall’s theorem
   3. Special cube complexes
   4. Canonical completion and retraction
   5. Application: separability of quasiconvex subgroups
   6. Hyperbolic cube complexes are virtually special
  Bibliography
Vincent Guirardel Geometric Small Cancellation
  Introduction
  Lecture 1. What is small cancellation about?
   1. The basic setting
   2. Applications of small cancellation
   3. Geometric small cancellation
  Lecture 2. Applying the small cancellation theorem
   1. When the theorem does not apply
   2. Weak proper discontinuity
   3. SQ-universality
   4. Dehn fillings
  Lecture 3. Rotating families
   1. Road-map of the proof of the small cancellation theorem
   2. Definitions
   3. Statements
   4. Proof of Theorem 3.4
   5. Hyperbolicity of the quotient
   6. Exercises
  Lecture 4. The cone-off
   1. Presentation
   2. The hyperbolic cone of a graph
   3. Cone-off of a space over a family of subspaces
  Bibliography
Pierre-Emmanuel Caprace Lectures on Proper CAT(0) Spaces and Their Isometry Groups
  Introduction
  Lecture 1. Leading examples
   1. The basics
   2. The Cartan–Hadamard theorem
   3. Proper cocompact spaces
   4. Symmetric spaces
   5. Euclidean buildings
   6. Rigidity
   7. Exercises
  Lecture 2. Geometric density
   1. A geometric relative of Zariski density
   2. The visual boundary
   3. Convexity
   4. A product decomposition theorem
   5. Geometric density of normal subgroups
   6. Exercises
  Lecture 3. The full isometry group
   1. Locally compact groups
   2. The isometry group of an irreducible space
   3. de Rham decomposition
   4. Exercises
  Lecture 4. Lattices
   1. Geometric Borel density
   2. Fixed points at infinity
   3. Boundary points with a cocompact stabiliser
   4. Back to rigidity
   5. Flats and free abelian subgroups
   6. Exercises
  Bibliography
Michael Kapovich Lectures on Quasi-Isometric Rigidity
  Introduction: What is Geometric Group Theory?
  Lecture 1. Groups and spaces
   1. Cayley graphs and other metric spaces
   2. Quasi-isometries
   3. Virtual isomorphisms and QI rigidity problem
   4. Examples and non-examples of QI rigidity
  Lecture 2. Ultralimits and Morse lemma
   1. Ultralimits of sequences in topological spaces
   2. Ultralimits of sequences of metric spaces
   3. Ultralimits and CAT(0) metric spaces
   4. Asymptotic cones
   5. Quasi-isometries and asymptotic cones
   6. Morse lemma
  Lecture 3. Boundary extension and quasi-conformal maps
   1. Boundary extension of QI maps of hyperbolic spaces
   2. Quasi-actions
   3. Conical limit points of quasi-actions
   4. Quasiconformality of the boundary extension
  Lecture 4. Quasiconformal groups and Tukia’s rigidity theorem
   1. Quasiconformal groups
   2. Invariant measurable conformal structure for qc groups
   3. Proof of Tukia’s theorem
   4. QI rigidity for surface groups
  Appendix.
   1. Hyperbolic space
   2. Least volume ellipsoids
   3. Different measures of quasiconformality
  Bibliography
Mladen Bestvina Geometry of Outer Space
  Introduction
  Lecture 1. Outer space and its topology
   1.1. Markings
   1.2. Metric
   1.3. Lengths of loops
   1.4. Fn-trees
   1.5. Topology and Action
   1.6. Thick part and spine
   1.7. Action of Out(Fn)
   1.8. Rank 2 picture
   1.9. Contractibility
   1.10. Group theoretic consequences
  Lecture 2. Lipschitz metric, train tracks
   2.1. Definitions
   2.2. Elementary facts
   2.3. Example
   2.4. Tension graph, train track structure
   2.5. Folding paths
  Lecture 3. Classification of automorphisms
   3.1. Elliptic automorphisms
   3.2. Hyperbolic automorphisms
   3.3. Parabolic automorphisms
   3.4. Reducible automorphisms
   3.5. Growth
   3.6. Pathologies
  Lecture 4. Hyperbolic features
   4.1. Complex of free factors Fn
   4.2. The complex Sn of free factorizations
   4.3. Coarse projections
   4.4. Idea of the proof of hyperbolicity
  Bibliography
Dave Witte Morris Some Arithmetic Groups that Do Not Act on the Circle
  Abstract
  Lecture 1. Left-orderable groups and a proof for SL(3, Z)
   1A. Introduction
   1B. Examples
   1C. The main conjecture
   1D. Left-invariant total orders
   1E. SL(3, Z) does not act on the line
   1F. Comments on other arithmetic groups
  Lecture 2. Bounded generation and a proof for SL(2, Z[α])
   2A. What is bounded generation?
   2B. Bounded generation of SL(2, Z[α])
   2C. Bounded orbits and a proof for SL(2, Z[α])
   2D. Implications for other arithmetic groups of higher rank
  Lecture 3. What is an amenable group?
   3A. Ponzi schemes
   3B. Almost-invariant subsets
   3C. Average values and invariant measures
   3D. Examples of amenable groups
   3E. Applications to actions on the circle
  Lecture 4. Introduction to bounded cohomology
   4A. Definition
   4B. Application to actions on the circle
   4C. Computing H2 b (Γ;R)
  Appendix. Hints for the exercises
  Bibliography
Tsachik Gelander Lectures on Lattices and Locally Symmetric Spaces
  Introduction
  Lecture 1. A brief overview on the theory of lattices
   1. Few definitions and examples
   2. Lattices resemble their ambient group in many ways
   3. Some basic properties of lattices
   4. A theorem of Mostow about lattices in solvable groups
   5. Existence of lattices
   6. Arithmeticity
  Lecture 2. On the Jordan–Zassenhaus–Kazhdan–Margulis theorem
   1. Zassenhaus neighborhood
   2. Jordan’s theorem
   3. Approximations by finite transitive spaces
   4. Margulis’ lemma
   5. Crystallographic manifolds
  Lecture 3. On the geometry of locally symmetric spaces and some
  finiteness theorems
   1. Hyperbolic spaces
   2. The thick–thin decomposition
   3. Presentations of torsion free lattices
   4. General symmetric spaces
   5. Number of generators of lattices
  Lecture 4. Rigidity and applications
   1. Local rigidity
   2. Wang’s finiteness theorem
   3. Mostow’s rigidity theorem
   4. Superrigidity and arithmeticity
   5. Invariant random subgroups and the Nevo–Stuck–Zimmer theorem
  Bibliography
Amie Wilkinson Lectures on Marked Length Spectrum Rigidity
  Introduction
  Lecture 1. Preliminaries
   1. Background on negatively curved surfaces
   2. A key example
   3. Geodesics in negative curvature
   4. The geodesic flow
  Lecture 2. Geometry and dynamics in negative curvature
   1. Busemann functions and horospheres
   2. The space of geodesics and the boundary at infinity
   3. The Liouville current, the cross ratio and the canonical contact form
   4. Summary: a dictionary
  Lecture 3. The proof, Part I: A volume preserving conjugacy
   1. Otal’s Proof
  Lecture 4. The proof, Part II: Volume preserving implies isometry
  Final Comments
  Bibliography
Emmanuel Breuillard Expander Graphs, Property (τ ) and Approximate Groups
  Foreword
  Lecture 1. Amenability and random walks
   A. Amenability, Folner criterion
   B. Isoperimetric inequality, edge expansion
   C. Invariant means
   D. Random walks on groups, the spectral radius and Kesten’s criterion
   E. Further facts and questions about growth of groups and random walks
   F. Exercise: Paradoxical decompositions, Ponzi schemes and Tarski numbers
  Lecture 2. The Tits alternative and Kazhdan’s property (T)
   A. The Tits alternative
   B. Kazhdan’s property (T)
   C. Uniformity issues in the Tits alternative, non-amenability and Kazhdan’s property (T)
  Lecture 3. Property (τ ) and expanders
   A. Expander graphs
   B. Property (τ )
  Lecture 4. Approximate groups and the Bourgain-Gamburd method
   A. Which finite groups can be turned into expanders?
   B. The Bourgain-Gamburd method
   C. Approximate groups
   D. Random generators and the uniformity conjecture
   E. Super-strong approximation
  Appendix. The Brooks-Burger transfer
  Bibliography
Martin R. Bridson Cube Complexes, Subgroups of Mapping Class Groups, and Nilpotent Genus
  1. Introduction
  2. Subgroups of mapping class groups
  3. Fibre products and subdirect products of free groups
  4. A new level of complication
  5. The nilpotent genus of a group
  6. Cubes, RAAGs and CAT(0)
  7. Rips, fibre products and 1-2-3
  8. Examples template
  9. Proofs from the template
  10. The isomorphism problem for subgroups of RAAGs and Mod(S)
  11. Dehn functions
  Bibliography

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加