前辅文
Introduction
Chapter 1. Affine and Projective Planes
§1.1. Preview
§1.2. Incidence geometry
§1.3. Affine planes
§1.4. Projective planes
§1.5. Duality
§1.6. Exercises
Chapter 2. Central Automorphisms of Projective Planes
§2.1. Preview
§2.2. Projections and automorphisms
§2.3. Transvections and dilatations
§2.4. Transitivity properties
§2.5. Exercises
Chapter 3. Coordinates for Projective Planes
§3.1. Preview
§3.2. Ternary systems
§3.3. Two coordinatizations related to G(C)
§3.4. Transvections and algebraic properties
§3.5. Exercises
Chapter 4. Alternative Rings
§4.1. Preview
§4.2. Left Moufang rings
§4.3. Artin’s Theorem
§4.4. Inverses in alternative rings
§4.5. The Cayley-Dickson process
§4.6. Composition algebras
§4.7. Split and division composition algebras
§4.8. Exercises
Chapter 5. Configuration Conditions
§5.1. Preview
§5.2. Desargues condition
§5.3. Quadrangle sections
§5.4. Pappus condition
§5.5. Configurations and central automorphisms
§5.6. Exercises
Chapter 6. Dimension Theory
§6.1. Preview
§6.2. Dimensionable sets
§6.3. Independence and bases
§6.4. Strongly dimensionable sets
§6.5. Exercises
Chapter 7. Projective Geometries
§7.1. Preview
§7.2. Projective and nearly projective geometries
§7.3. Relation to strongly dimensionable sets
§7.4. Classification of projective geometries
§7.5. Exercises
Chapter 8. Automorphisms of G(V)
§8.1. Preview
§8.2. The Fundamental Theorem
§8.3. Subgroups of Aut(G(V ))
§8.4. Simple groups
§8.5. Exercises
Chapter 9. Quadratic Forms and Orthogonal Groups
§9.1. Preview
§9.2. Quadratic forms
§9.3. Orthogonal groups
§9.4. Exercises
Chapter 10. Homogeneous Maps
§10.1. Preview
§10.2. Polarization of homogeneous maps
§10.3. Exercises
Chapter 11. Norms and Hermitian Matrices
§11.1. Preview
§11.2. Hermitian matrices and HEn(C)
§11.3. Norms on H(Cn)
§11.4. Transitivity of HEn(C)
§11.5. Trace and adjoint
§11.6. H(C3)
§11.7. Exercises
Chapter 12. Octonion Planes
§12.1. Preview
§12.2. The construction of octonion planes
§12.3. Simplicity of PHE3(O)
§12.4. Automorphisms of octonion planes
§12.5. Exercises
Chapter 13. Projective Remoteness Planes
§13.1. Preview
§13.2. Definition and examples
§13.3. Groups of Steinberg type
§13.4. Transvections
§13.5. Exercises
Chapter 14. Other Geometries
§14.1. Preview
§14.2. Erlangen program
§14.3. The geometry of R-spaces
§14.4. Buildings
§14.5. Generalized n-gons
§14.6. Moufang sets and structurable algebras
§14.7. Freudenthal-Tits magic square
§14.8. Exercises
Bibliography
Index