购物车中还没有商品,赶紧选购吧!
Keller-Box 方法及其应用(英文版) K. Vajravelu, K. V. Prasad 高等教育出版社
商品价格
定价
手机购买
商品二维码
配送
北京市
数量

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:Keller-Box 方法及其应用(英文版)
ISBN:9787040388916
出版社:高等教育出版社
出版年月:2014-04
作者:K. Vajravelu, K. V.
定价:89.00
页码:401
装帧:精装
版次:1
字数:460
开本:16开
套装书:否

本书旨在帮助需要从事英文写作与演讲的科研人员和大学生、研究生了解关于科技英语写作的方方面面,尤其是数学文章写作的基本常识和注意事项。写作中参考了西方学者关于英文数学写作的观点,并揉合了作者自己的观念、认识及经验。阅读本书对初学者尤其会有帮助。

全书内容包括:数学文章的结构,数学文章的词句,怎样修改文章,文章投稿,怎样写书,数学综合写作,其它文体的书写,怎样讲数学。

Front Matter
Chapter 0 Introduction
  References
Chapter 1 Basics of the Finite Difference Approximations
  1.1 Finite difference approximations
  1.2 The initial value problem for ODEs
  1.3 Some basic numerical methods
  1.4 Some basic PDEs
  1.5 Numerical solution to partial differential equations
  References
Chapter 2 Principles of the Implicit Keller-box Method
  2.1 Principles of implicit finite difference methods
  2.2 Finite difference methods
  2.3 Boundary value problems in ordinary differentialequations
  References
Chapter 3 Stability and Convergence of the Implicit Keller-box Method
  3.1 Convergence of implicit difference methods for parabolic functional differential equations
   3.1.1 Introduction
   3.1.2 Discretization of mixed problems
   3.1.3 Solvability of implicit difference functional problems
   3.1.4 Approximate solutions of difference functional problems
   3.1.5 Convergence of implicit difference methods
   3.1.6 Numerical examples
  3.2 Rate of convergence of finite difference scheme on uniform/non-uniform grids
   3.2.1 Introduction
   3.2.2 Analytical results
   3.2.3 Numerical results
  3.3 Stability and convergence of Crank-Nicholson method for fractional advection dispersion equation
   3.3.1 Introduction
   3.3.2 Problem formulation
   3.3.3 Numerical formulation of the Crank-Nicholson method
   3.3.4 Stability of the Crank-Nicholson method
   3.3.5 Convergence
   3.3.6 Radial flow problem
   3.3.7 Conclusions
  References
Chapter 4 Application of the Keller-box Method to Boundary Layer Problems
  4.1 Flow of a power-law fluid over a stretching sheet
   4.1.1 Introduction
   4.1.2 Formulation of the problem
   4.1.3 Numerical solution method
   4.1.4 Results and discussion
   4.1.5 Concluding remarks
  4.2 Hydromagnetic flow of a power-law fluid over a stretching sheet
   4.2.1 Introduction
   4.2.2 Flow analysis
   4.2.3 Numerical solution method
   4.2.4 Results and discussion
  4.3 MHD Power-law fluid flow and heat transfer over a non-isothermal stretching sheet
   4.3.1 Introduction
   4.3.2 Governing equations and similarity analysis
   4.3.3 Heat transfer
   4.3.4 Numerical procedure
   4.3.5 Results and discussion
  4.4 MHD flow and heat transfer of a Maxwell fluid over a non-isothermal stretching sheet
   4.4.1 Introduction
   4.4.2 Mathematical formulation
   4.4.3 Heat transfer analysis
   4.4.4 Numerical procedure
   4.4.5 Results and discussion
   4.4.6 Conclusions
  4.5 MHD boundary layer flow of a micropolar fluid past a wedge with constant wall heat flux
   4.5.1 Introduction
   4.5.2 Flow analysis
   4.5.3 Flat plate problem
   4.5.4 Results and discussion
   4.5.5 Conclusions
  References
Chapter 5 Application of the Keller-box Method to Fluid Flow and Heat Transfer Problems
  5.1 Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet
   5.1.1 Introduction
   5.1.2 Mathematical formulation
   5.1.3 Solution of the problem
   5.1.4 Results and discussion
   5.1.5 Conclusions
  5.2 Convection flow and heat transfer of a Maxwell fluid over a non-isothermal surface
   5.2.1 Introduction
   5.2.2 Mathematical formulation
   5.2.3 Skin friction
   5.2.4 Nusselt number
   5.2.5 Results and discussion
   5.2.6 Conclusion
  5.3 The effects of variable fluid properties on the hydromagnetic flow and heat transfer over a nonlinearly stretching shee
   5.3.1 Introduction
   5.3.2 Mathematical formulation
   5.3.3 Numerical procedure
   5.3.4 Results and discussion
   5.3.5 Conclusions
  5.4 Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching sheet
   5.4.1 Introduction
   5.4.2 Mathematical formulation
   5.4.3 Numerical procedure
   5.4.4 Results and discussion
  5.5 The effects of linear/nonlinear convection on the non-Darcian flow and heat transfer along a permeable vertical surface
   5.5.1 Introduction
   5.5.2 Mathematical formulation
   5.5.3 Numerical procedure
   5.5.4 Results and discussion
  5.6 Unsteady flow and heat transfer in a thin film of Ostwald-de Waele liquid over a stretching surface
   5.6.1 Introduction
   5.6.2 Mathematical formulation
   5.6.3 Numerical procedure
   5.6.4 Results and discussion
   5.6.5 Conclusions
  References
Chapter 6 Application of the Keller-box Method to More Advanced Problems
  6.1 Heat transfer phenomena in a moving nanofluid over a horizontal surface
   6.1.1 Introduction
   6.1.2 Mathematical formulation
   6.1.3 Similarity equations
   6.1.4 Numerical procedure
   6.1.5 Results and discussion
   6.1.6 Conclusion
  6.2 Hydromagnetic fluid flow and heat transfer at astretching sheet with fluid-particle suspension and variable fluid properties
   6.2.1 Introduction
   6.2.2 Mathematical formulation
   6.2.3 Solution for special cases
   6.2.4 Analytical solution by perturbation
   6.2.5 Numerical procedure
   6.2.6 Results and discussion
   6.2.7 Conclusions
  6.3 Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid
   6.3.1 Introduction
   6.3.2 Problem formulation
   6.3.3 Numerical method and validation
   6.3.4 Results and discussion
   6.3.5 Conclusion
  6.4 MHD mixed convection flow over a permeable non-isothermal wedge
   6.4.1 Introduction
   6.4.2 Mathematical formulation
   6.4.3 Numerical procedure
   6.4.4 Results and discussion
   6.4.5 Concluding remarks
  6.5 Mixed convection boundary layer flow about a solid sphere with Newtonian heating
   6.5.1 Introduction
   6.5.2 Mathematical formulation
   6.5.3 Solution procedure
   6.5.4 Results and discussion
   6.5.5 Conclusions
  6.6 Flow and heat transfer of a viscoelastic fluid over a flat plate with a magnetic field and a pressure gradient
   6.6.1 Introduction
   6.6.2 Governing equations
   6.6.3 Results and discussion
   6.6.4 Conclusions
  References
Subject Index
Author Index
版权

Kuppalapalle Vajravelu 是美国中佛罗里达大学数学教授,力学、材料以及航空和航天工程教授,研究领域为非线性方程、非线性力学、热传导、数值分析、同伦分析方法等。Vajravelu 博士是期刊 Differential Equations and Nonlinear Mechanics 的创刊主编。

非线性物理科学系列NPS

这本书适合对凯勒箱法有兴趣的,或作为一项工作的人使用。

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加