本书是作者在莫斯科大学力学--数学系讲授多遍数学分析的基础上写成的. 本书自1981 年第1 版出版以来,至今已经修订为第~4 版. 在内容方面,作者力图使与其平行的以及后继的分析、代数和几何方面的现代数学课程之间联系更加紧密, 把重点移到一般数学中最有本质意义的那些概念和方法上,并改进语言的叙述, 使之与现代数学科学文献的语言适当 接近; 另一方面,在保持数学一般理论叙述严谨性的同时,对反映其自然科学源泉和应用的要求也有充分体现. 全书共二卷, 第二卷的内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、Rn中的曲面和微分形式、曲线积分和曲面积分、向量分析与场论、流形上微分形式的积分法、级数和含参变量函数族的一致收敛性及基本分析运算、含参变量积分、傅里叶级数与傅里叶变换、渐近展开等.与常见的分析教科书相比, 本卷的内容相当新颖,系统地引进了现代数学~(包括泛函分析、拓扑学和现代微分几何等)的基本概念、思想和方法, 有关应用的内容也更加贴近现代自然科学. 本书可供综合大学和师范大学数学、物理、力学及相关专业的教师和学生参考使用,工科大学应用数学系 也可当作教材或主要参考书. |
前辅文 |
|
|
|
|
俄罗斯数学教材选译 |
|
|
本书可供综合大学和师范大学数学、物理、力学及相关专业的教师和学生参考使用,工科大学应用数学系也可当作现代数学基础或主要参考书。 |
|
|