Preface to the Third Edition 
Preface to the First Edition 
Chapter 1 Introduction 
  1.0 Purpose 
  1.1 Kinematics and Kinetics 
  1.2 Mechanisms and Machines 
  1.3 A Brief History of Kinematics 
  1.4 Applications of Kinematics 
  1.5 The Design Process 
   Design, Invention, Creativity 
   Identification of Need 
   Background Research 
   Goal Statement 
   Performance Specifications 
   Ideation and Invention 
   Analysis 
   Selection 
   Detailed Design 
   Prototyping and Testing 
   Production 
  1.6 Other Approaches to Design 
   Axiomatic Design 
  1.7 Multiple Solutions 
  1.8 Human Factors Engineering 
  1.9 The Engineering Report 
  1.10 Units 
  1.11 What’s to Come 
Chapter 2 Kinematics Fundamentals 
  2.0 Introduction 
  2.1 Degrees of Freedom (DOF) or Mobility 
  2.2 Types of Motion 
  2.3 Links, Joints, and Kinematic Chains 
  2.4 Determining Degree of Freedom or Mobility 
   Degree of Freedom (Mobility) in Planar Mechanisms 
   Degree of Freedom (Mobility) in Spatial Mechanisms 
  2.5 Mechanisms and Structures 
  2.6 Paradoxes 
  2.7 Linkage Transformation 
  2.8 Intermittent Motion 
  2.9 Inversion 
  2.10 The Grashof Condition 
  2.11 Compliant Mechanisms 
  2.12 Micro Electro-Mechanical Systems (MEMS) 
  2.13 Practical Considerations 
   Pin Joints versus Sliders and Half Joints 
   Cantilever or Straddle Mount? 
   Short Links 
   Bearing Ratio 
   Commercial Slides 
   Linkages versus Cams 
Chapter 3 Graphical Linkage Synthesis 
  3.0 Introduction 
  3.1 Synthesis 
  3.2 Function, Path, and Motion Generation 
  3.3 Limiting Conditions 
  3.4 Dimensional Synthesis 
   Two-Position Synthesis 
   Three-Position Synthesis with Specified Moving Pivots 
   Three-Position Synthesis with Alternate Moving Pivots 
   Three-Position Synthesis with Specified Fixed Pivots 
   Position Synthesis for More Than Three Positions 
  3.5 Quick-Return Mechanisms 
   Fourbar Quick-Return 
   Sixbar Quick-Return 
  3.6 Coupler Curves 
Chapter 4 Position Analysis 
  4.0 Introduction 
  4.1 Coordinate Systems 
  4.2 Position and Displacement 
   Position 
   Coordinate Transformation 
   Displacement 
  4.3 Translation, Rotation, and Complex Motion 
   Translation 
   Rotation 
   Complex Motion 
   Theorems 
  4.4 Graphical Position Analysis of Linkages 
  4.5 Algebraic Position Analysis of Linkages 
   Vector Loop Representation of Linkages 
   Complex Numbers as Vectors 
   The Vector Loop Equation for a Fourbar Linkage 
  4.6 The Fourbar Slider-Crank Position Solution 
  4.7 An Inverted Slider-Crank Position Solution 
  4.8 Linkages of More Than Four Bars 
   The Geared Fivebar Linkage 
   Sixbar Linkages 
  4.9 Position of any Point on a Linkage 
  4.10 Transmission Angles 
   Extreme Values of the Transmission Angle 
  4.11 Toggle Positions 
Chapter 5 Analytical Linkage Synthesis 
  5.0 Introduction 
  5.1 Types of Kinematic Synthesis 
  5.2 Precision Points 
  5.3 Two-Position Motion Generation by Analytical Synthesis 
  5.4 Comparison of Analytical and Graphical Two-Position Synthesis 
  5.5 Simultaneous Equation Solution 
  5.6 Three-Position Motion Generation by Analytical Synthesis 
  5.7 Comparison of Analytical and Graphical Three-position Synthesis 
  5.8 Synthesis for a Specified Fixed Pivot Location 
Chapter 6 Velocity Analysis 
  6.0 Introduction 
  6.1 Definition of Velocity 
  6.2 Graphical Velocity Analysis 
  6.3 Instant Centers of Velocity 
  6.4 Velocity Analysis with Instant Centers 
   Angular Velocity Ratio 
   Mechanical Advantage 
   Using Instant Centers in Linkage Design 
  6.5 Velocity of Slip 
  6.6 Analytical Solutions for Velocity Analysis 
   The Fourbar Pin-Jointed Linkage 
   The Fourbar Slider-Crank 
   The Fourbar Inverted Slider-Crank 
  6.7 Velocity Analysis of The Geared Fivebar Linkage 
  6.8 Velocity of any Point on a Linkage 
Chapter 7 Acceleration Analysis 
  7.0 Introduction 
  7.1 Definition of Acceleration 
  7.2 Graphical Acceleration Analysis 
  7.3 Analytical Solutions for Acceleration Analysis 
   The Fourbar Pin-Jointed Linkage 
   The Fourbar Slider-Crank 
   Coriolis Acceleration 
   The Fourbar Inverted Slider-Crank 
  7.4 Acceleration Analysis of the Geared Fivebar Linkage 
  7.5 Acceleration of any Point on a Linkage 
  7.6 Human Tolerance of Acceleration 
  7.7 Jerk 
  7.8 Linkages of n Bars 
Chapter 8 Cam Design 
  8.0 Introduction 
  8.1 Cam Terminology 
   Type of Follower Motion 
   Type of Joint Closure 
   Type of Follower 
   Type of Cam 
   Type of Motion Constraints 
   Type of Motion Program 
  8.2 S V A J Diagrams 
  8.3 Double-Dwell Cam Design—Choosing S V A J Functions 
   The Fundamental Law of Cam Design 
   Simple Harmonic Motion (SHM) 
   Cycloidal Displacement 
   Combined Functions 
   The SCCA Family of Double-Dwell Functions 
   Polynomial Functions 
   Double-Dwell Applications of Polynomials 
  8.4 Single-Dwell Cam Design—Choosing s v a j Functions 
   Single-Dwell Applications of Polynomials 
   Effect of Asymmetry on the Rise-Fall Polynomial Solution 
  8.5 Critical Path Motion (CPM) 
   Polynomials Used for Critical Path Motion 
  8.6 Sizing the Cam—Pressure Angle and Radius of Curvature 
   Pressure Angle—Translating Roller Followers 
   Choosing a Prime Circle Radius 
   Overturning Moment—Translating Flat-Faced Follower 
   Radius of Curvature—Translating Roller Follower 
   Radius of Curvature—Translating Flat-Faced Follower 
Chapter 9 Gear Trains 
  9.0 Introduction 
  9.1 Rolling Cylinders 
  9.2 The Fundamental Law of Gearing 
   The Involute Tooth Form 
   Pressure Angle 
   Changing Center Distance 
   Backlash 
  9.3 Gear Tooth Nomenclature 
  9.4 Interference and Undercutting 
   Unequal-Addendum Tooth Forms 
  9.5 Contact Ratio 
  9.6 Gear Types 
   Spur, Helical, and Herringbone Gears 
   Worms and Worm Gears 
   Rack and Pinion 
   Bevel and Hypoid Gears 
   Noncircular Gears 
   Belt and Chain Drives 
  9.7 Simple Gear Trains 
  9.8 Compound Gear Trains 
   Design of Compound Trains 
   Design of Reverted Compound Trains 
   An Algorithm for the Design of Compound Gear Trains 
  9.9 Epicyclic or Planetary Gear Trains 
   The Tabular Method 
   The Formula Method 
  9.10 Efficiency of Gear Trains 
  9.11 Transmissions 
  9.12 Differentials 
Chapter 10 Dynamic Force Analysis 
  10.0 Introduction 
  10.1 Newtonian Solution Method 
  10.2 Single Link in Pure Rotation 
  10.3 Force Analysis of a Threebar Crank-Slide Linkage 
  10.4 Force Analysis of a Fourbar Linkage 
  10.5 Force Analysis of a Fourbar Slider-Crank Linkage 
  10.6 Force Analysis of the Inverted Slider-Crank 
  10.7 Force Analysis—Linkages with More Than Four Bars 
  10.8 Shaking Forces and Shaking Torque 
  10.9 Linkage Force Analysis by Energy Methods 
  10.10 Controlling Input Torque—Flywheels 
  10.11 A Linkage Force Transmission Index 
  10.12 Practical Considerations 
Chapter 11 Balancing 
  11.0 Introduction 
  11.1 Static Balance 
  11.2 Dynamic Balance 
  11.3 Balancing Linkages 
   Complete Force Balance of Linkages 
  11.4 Effect of Balancing on Shaking and Pin Forces 
  11.5 Effect of Balancing on Input Torque 
  11.6 Balancing the Shaking Moment in Linkages 
  11.7 Measuring and Correcting Imbalance 
Vocabulary of the key terms重要名词术语英汉对照表