作者介绍了渐近几何分析理论,这是一个介于几何学与泛函分析之间的领域。在这个领域中,“同构”的观点取代了低维几何的典型等距问题,并引入了渐近方法(当维数趋于无穷时)。几何和分析在这里以一种非平凡的方式相遇。书中遇到的同构形式几何不等式的基本例子是“同构等距不等式”,它导致了“集中现象”的发现,这是该理论最强大的工具之一,由此得到了许多反直觉的结果。 本书的核心主题是随机性和模式的相互作用。乍一看,高维的生命似乎意味着存在多种“可能性”,因此人们可以预期,随着维度的增加,多样性和复杂性也会增加。然而,测量的集中和由凸性引起的效应表明,对于由高维引起的混合体中的任意凸体,这种多样性得到了补偿,并且产生了秩序和模式。 本书面向想要了解这个令人兴奋的主题的研究生和研究人员。书中涵盖的主题包括凸性、集中现象、覆盖数、Dvoretzky型定理、凸体中的体积分布等。 |
|
|
|
|
|
|
|
|
|
|
|